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Complete Solutions to Exercises 2.4

1. To show that the given vectors span 2 we prove that an arbitrary vector
a

b

 
  
 

w is

a linear combination of the given vectors.
(a) The scalars 1k and 2k need to satisfy 1 1 2 2k k e e w :

11
1 2

2 2

01 0

0 1 0

kk a
k k

k k b

         
             

          
Therefore 1k a and 2k b which means the given vectors 1e and 2e span 2 .

(b) Similarly we need to find scalars 1k and 2k which satisfy 1 2k k u v w :

1 2 1 2

1 2 1 2

1 21 2

1 1

1 1
k k k k

k k k k a

k kk k b

   
     

   
        

                

u v

We need to solve the linear simultaneous equations:

 
1 2

1 2

(*)

**

k k a

k k b

 

 

for 1k and 2k . Adding these equations (*) and (**) gives

1 12   yields
2

a b
k a b k


  

Subtracting (*) from (**) gives

2 22   implies
2

b a
k b a k


  

Since we have found the scalars, 1 2

a b
k


 and 2 2

b a
k


 ,  for  any real numbers a and

b therefore the given vectors u and v span 2 .
(c) Again we need to find scalars 1k and 2k which satisfy 1 2k k u v w :

1 2 1 2

1 2 1 2

1 21 2

2 1

2 1

2 2

22

k k k k

k k k k a

k kk k b

   
        

        
                

u v

We need to solve the linear simultaneous equations

 
1 2

1 2

2 (*)

2 **

k k a

k k b

 

 

for 1k and 2k . Subtracting these equations (*) and (**) gives

0   ora b a b  

Since a b the given vectors span
1

1

a
a

a

   
   

   
and not

a

b

 
 
 

.

Hence the given vectors u and v do not span 2 . [Note that vectors u and v are linearly
dependent.]
(d) Similarly we need to find scalars 1k and 2k which satisfy 1 2k k u v w :
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1 2 1 2

1 1

2 10

a
k k k k

b

     
        

     
u v

The augmented matrix is

1

2

R 1 1

R 2 10

a

b

  
 
 

Carrying out the row operation 2 1R 2R gives

1 2

1

2 1

R 1 1

R 2R 0 12 2

k k

a

b a

  
   

From the bottom row we have

2 2

2
12 2    gives

12

b a
k b a k


  

Substituting this 2

2

12

b a
k


 into the top row 1 2k k a  yields

1

2 2 12 2 12 10

12 12 12 12 12

b a b a a b a a b a
k a

    
     

Since we have found scalars, 1

10

12

b a
k


 and 2

2

12

b a
k


 , for any real numbers a and b

therefore the given vectors u and v span 2 .

2. Generally similar to question 1 but we have 3 scalars 1 2,k k and 3k , and we

need to find them for any real numbers a, b and c in an arbitrary vector

a

b

c

 
   
 
 

x .

(a) We need to determine scalars 1 2,k k and 3k in the linear combination

1 2 3k k k  u v w x :

1 2 3 1 2 3

1 1

2 2

3 3

2 0 0

0 2 0

0 0 2

2 20 0

0 2 0 2

0 20 2

k k k k k k

k k a

k k b

k ck

     
              
     
     
        
                    

                

u v w

We have the simultaneous linear equations

1 2 32 , 2   and  2k a k b k c  
Dividing each equation by 2 gives

1 2 3,   and
2 2 2

a b c
k k k  

Since we have scalars, 1 2 3,   and
2 2 2

a b c
k k k   , for any real numbers a, b and c

therefore the given vectors u, v and w span 3 .
(b) Consider the linear combination 1 2 3k k k  u v w x :
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1 2 3 1 2 3

1 2 1

1 2 2

1 2 3

a

k k k k k k b

c

       
                   
       
       

u v w

We use elementary row operations to determine the scalars 1 2,k k and 3k . Writing out

the augmented matrix we have

1

2

3

R 1 2 1

R 1 2 2

R 1 2 3

a

b

c

 
 
 
 
 

Carrying out the row operation 3 2R R gives

1

2
*
3 3 2

R 1 2 1

R 1 2 2

R R R 0 0 1

a

b

c b

 
 
 
    

Executing 2 1R R gives

1
*
2 2 1

*
3

R 1 2 1

R R R 0 0 1

R 0 0 1

a

b a

c b

 
    
  

Subtracting the last two rows * *
3 2R R gives

 

1
*
2 2 1

** * *
3 3 2

R 1 2 1

R R R 0 0 1

R R R 0 0 0

a

b a

c b b a

 
 

   
      

From the bottom row we have

 0 2c b b a c b a      

This result is only true when 2 0 or  2c b a c b a     but for the vectors to span 3
we need to show that the result is true for all values of a, b and c and not only when

2c b a  .
Hence the given vectors u, v and w do not span 3 .
(c) We need to determine the scalars 1 2,k k and 3k in the linear combination

1 2 3k k k  u v w x :

1 2 3 1 2 3

31 2 1 2 3

1 2 1 2

11

1 1 1

1 1 0

1 0 0

0

00

k k k k k k

kk k k k k a

k k k k b

k ck

     
              
     
     

         
                     

                 

u v w

From the last row we have 1k c and substituting this into the second row gives

1 2 2 2  which yieldsk k c k b k b c     
Substituting 1k c and 2k b c  into the first row gives
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 1 2 3 3

3 3  which gives

k k k c b c k

b k a k a b

     

    
Hence we have scalars 1k c , 2k b c  and 3k a b  . These are valid for any real

numbers ,a b and c so therefore the given vectors u, v and w span 3 .

(d) Similarly we have scalars 1 2,k k and 3k in the linear combination

1 2 3k k k  u v w x where x is an arbitrary vector -  Ta b cx :

1 2 3 1 2 3

1 2 2

2 4 2

1 0 3

a

k k k k k k b

c

       
                    
       
       

u v w

We use elementary row operations to determine the scalars 1 2,k k and 3k . Writing out

the augmented matrix we have

1

2

3

R 1 2 2

R 2 4 2

R 1 0 3

a

b

c

  
  
 
 

Carrying out the row operation 2 1R R :

1 2 3

1

2 1

3

R 1 2 2

R 2R 0 0 2 2

R 1 0 3

k k k

a

b a

c

  
   
 
 

From the middle row we have

3 3

2
2 2    gives

2

b a
k b a k


  

Substituting this 3

2

2

b a
k


 into the bottom row gives

1

1

2
3

2

2 2 3 6 2 3 6
3

2 2 2 2

b a
k c

b a c b a c b a
k c

   
 

         
 

What else do we need to find?
The last scalar 2k . How?

By substituting 1

2 3 6

2

c b a
k

 
 and 3

2

2

b a
k


 into the top row

1 2 32 2k k k a  
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   
   

 

1 3

2

2

2

2

2

2

2 3 6 2
2 2

2 2

2 3 6 4 2 2 2 Multiplying by 2

4 2 2 2 2 3 6 Transposing

4 2 2 4 2 3 6

4 5 2 8 Simplifying

5 2 8

4

k k

c b a b a
k a

c b a k b a a

k a b a c b a

k a b a c b a

k b c a

b c a
k

 

      
 

     

     

     

  

 


 

We have 1

2 3 6

2

c b a
k

 
 , 2

5 2 8

4

b c a
k

 
 and 3

2

2

b a
k


 for any real values of a, b

and c. Hence the given vectors u, v and w span 3 .

3. To find whether the 2 given vectors form a basis for 2 we need to check only one
of the following:
(i) The vectors span 2 .
Or (ii) The vectors are linearly independent.

(a)We show that the given 2 vectors
1 0

  and
2 1

   
    
   

u v are linearly independent.

Since these vectors are not scalar  multiples of each other so they are linearly
independent.
Hence by:

Proposition (2-16). Any n linearly independent vectors in n form a basis for n .

The given vectors
1 0

  and
2 1

   
    
   

u v form a basis for 2 .

(b) What do you notice when examining the given vectors
2 1

4 2
  and

   
       

u v ?

The vector u is 2 times the vector v or in mathematical notation we have
2 u v

This means that 2 u v O , that is there are non - zero scalars which produce the zero
vector. Hence 1 2k k u v O where 1 1k  and 2 2k  which means that the vectors u and

v are linearly dependent. The given vectors cannot form a basis for 2 .

(c) Since the given vectors
4 1

1 3
m

   
   

   
(m is a scalar) are not scalar multiples of each

other so they are linearly independent. Again by

Proposition (2-16). Any n linearly independent vectors in n form a basis for n .

The given vectors form a basis for 2 .
(d) We know that

3 2

5 3
m

   
   

   
where m is a scalar

Hence the given vectors are linearly independent so they form a basis for 2 .
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4. (a) The given set of vectors
1 0 1

,   and
2 1 0

     
       
     

u v w do not form a basis for

2 because by Proposition (2.31) the basis of n has exactly n vectors but in this case
we have 3 vectors in 2 .

(b) The given set of vectors

1 1 0

1 , 1   and  0

1 0 0

     
            
     
     

u v w do not form a basis for 3

because we have the zero vector w which means that these vectors are linearly
dependent.

(c) The given set of vectors

1 1 1 2

1 1 2 2
, ,   and

1 0 3 2

1 1 4 2

       
                 
       
       

       

u v w x do not form a

basis for 4 because the vectors u and x are multiplies of each other, 2u x , which
means that these vectors are linearly dependent.

(d) The given set of vectors

1 1 3 2

2 5 2 9

3 , 0 , 5   and  2

4 2 4 7

5 4 9 7

       
       
       
           
       
       
              

u v w x do not form a

basis for 5 because by Proposition (2-20) the basis of n has exactly n vectors but in
this case we have 4 vectors in 5 .

5. (a) We are given that

1 1 0

2 5 0

3 4 9

 
   
 
 

A ,

1

3

4

 
   
 
 

b . Let the scalars be 1 2 3, ,k k k which

we can write as entries in the vector
1

2

3

k

k

k

 
   
 
 

x . The vector b is in the space spanned by

the columns of matrix A if we can find values for the scalars k’s such that Ax b . The
augmented matrix is:

1

2

3

R 1 1 0 1

R 2 5 0 3

R 3 4 9 4

 
 
 
 
 

Carrying out the row operations 2 1R 2R and 3 1R 3R :

1 2 3

1

2 1

3 1

R 1 1 0 1

R 2R 0 3 0 1

R 3R 0 1 9 1

k k k

 
   
   

Expanding the middle row gives:

acauser3
스탬프
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2 2

1
3 1

3
k k  

Using the top row we have

1 2 1 2

1 2
1 1 1

3 3
k k k k       

Using the bottom row:

2
2 3 3

1 1 1/ 3 2 / 3 2
9 1

9 9 9 27

k
k k k

 
      

This means that
1 1 0 1

2 1 2
2 5 0 3

3 3 27
3 4 9 4

       
                 
       
       

b

Hence the vector b is in the space spanned by the columns of matrix A.

(b) Let
1

2

3

k

k

k

 
   
 
 

x where 1 2 3, ,k k k are the scalars associated with the columns of matrix

A. We have the augmented matrix  A b given by:

1

2

3

R 1 2 3 1

R 4 5 6 3

R 7 8 9 4

 
 
 
 
 

Carrying out row operations 2 1R R and 3 2R R :

1

2 2 1

3 3 2

R 1 2 3 1

R * R R 3 3 3 2

R *=R R 3 3 3 1

 
    
   

Subtracting the bottom two rows 3 2R * R * gives:

1 2 3

1

2

3 2

R 1 2 3 1

R * 3 3 3 2

R * R * 0 0 0 1

k k k

 
 
 
   

Expanding the bottom row we have

1 2 30 0 0 0 1k k k    
This means the system Ax b is inconsistent, so there is no vector x which satisfies this
linear system. Hence the vector b is not in the space spanned by the columns of matrix
A.

6. (a) Since we are given 3 vectors

5 0 0

0 , 6   and  0

0 0 7

     
            
     
     

u v w so it is enough to

show that these vectors are linearly independent for them to form a basis for 3 .
Consider the linear combination 1 2 3k k k  u v w O where 1 2,k k and 3k are scalars:
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1 2 3 1 2 3

1 1

2 2

3 3

5 0 0

0 6 0

0 0 7

5 0 0 5 0

0 6 0 6 0

0 7 7 00

k k k k k k

k k

k k

k k

     
              
     
     
         
                      

                 

u v w

Solving these we have

1 2 30, 0, 0k k k  
Since 1 2 3k k k  u v w O only has the trivial solution 1 2 3 0k k k   so the given

vectors are linearly independent.
Hence the vectors u, v and w form a basis for 3 .
(b) Similarly consider the linear combination 1 2 3k k k  u v w O where 1 2,k k and 3k

are scalars:

1 2 3 1 2 3

1 1

2 2

3 3

0 0

0 0

0 0

0 0 0

0 0 0

0 00

k k k k k k

k k

k k

k k






 
 

 

     
              
     
     
         
                      

                 

u v w

We are given that 0, 0   and 0  . Solving the above gives 1 2 3 0k k k   .

We have 1 2 3k k k  u v w O with only the trivial solution 1 2 3 0k k k   therefore the

given vectors are linearly independent.
Hence the vectors u, v and w form a basis for 3 .

7. To show that given vectors do not form a basis we can show it does not span
3 or they are linearly dependent. Writing out the linear combination of the vectors u, v,

w and x where x is an arbitrary vector in 3 :

1 2 3 1 2 3

1 1 1

1 1 5

2 2 2

a

k k k k k k b

c

       
                    
              

u v w

We have the augmented matrix

1

2

3

R 1 1 1

R 1 1 5

R 2 2 2

a

b

c

  
  
  

Carrying out the row operation 2 1R R and 3 1R 2R :

1
*
2 2 1

*
3 3 1

R 1 1 1

R R R 0 2 6

R R 2R 0 0 0 2

a

b a

c a

  
     
    
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From the last row we have 2 0c a  or 2c a . This means that the given vectors

     1 1 2 , 1 1 2 , 1 5 2
T T T     u v w only span vectors of the form:

2

a

b

a

 
 
 
 
 

and not

a

b

c

 
 
 
 
 

Hence vectors u, v and w do not span 3 so they cannot form a basis for 3 .

8. It is enough to show that the given vectors are linearly independent.
Consider the linear combination 1 2 3 4k k k k   u v w x O :

1 2 3 4 1 2 3 4

11

2 1 21

32 1 2 31

4321 1 2 3 4

1 0 0 0

1 1 0 0

1 1 1 0

1 1 1 1

0 0 0

0 0

0

k k k k k k k k

kk

k k kk

kk k k kk

kkkk k k k k

       
       
             
       
       
       

       
                   

         
       

       

u v w x

0

0

0

0

  
  
  

   
      

Solving this only gives the trivial solution 1 2 3 4 0k k k k    .

This means that the given vectors u, v, w and x are linearly independent.
Since the 4 vectors u, v, w and x are linearly independent so we conclude that these
vectors form a basis for 4 .

9. We are given the vectors    
1 0

1 5 0 5 , 0 1 0 1

0 0

T T

   
         
   
   

u v .

(a) Note that

1 0

5 1

0 0

m

   
      
   
   

where m is a scalar. Hence vectors u and v are not scalar

multiples of each other so they are linearly independent.
(b) The space spanned by vectors u and v is every linear combination of these vectors,
that is

1 0

5 1 5

0 0 0 0

k x

k c k c k c y

       
                   
       
       

u v where x and y are any real numbers

The vectors u and v span the x – y plane:
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The dark plane shown is the space spanned by vectors u and v. This is all the vectors of

the form

0

x

y

 
 
 
 
 

where x and y are any real numbers.

(c) We need a vector w which is linearly independent of

1 0

5 , 1

0 0

   
       
   
   

u v and all 3

vectors span 3 . Since u and v span

0

x

y

 
 
 
 
 

so we let

0

0

z

 
   
 
 

w where 0z  .

10. Need to show that if 1 2 3, , , , nv v v v span n then 1 2 3, , , ,   andnv v v v w
also span n .
Proof.
Since 1 2 3, , , , nv v v v span n so for any vector u in n we have

1 1 2 2 3 3

1 1 2 2 3 3 0
n n

n n

k k k k

k k k k

    

     

u v v v v

v v v v w




Hence 1 2 3, , , ,   andnv v v v w also span n .

■
11. Need to prove that

 1 1 2 2 3 3, , , , n nT k k k k v v v v
where none of the k’s are zero is also a basis for n .
Proof.
Let u be an arbitrary vector in n then

1 1 2 2 3 3 n nc c c c    u v v v v
because the v’s form a basis for n . Since all the scalars are real numbers therefore for
each j in 1 j n  we let

j
j

j

c
a

k
 or j j jc k a

Substituting this, j j jc k a , for each j we have

x – y
plane
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       
       

1 1 2 2 3 3

1 1 1 2 2 2 3 3 3

1 1 1 2 2 2 3 3 3

n n

n n n

n n n

c c c c

k a k a k a k a

a k a k a k a k

    

    

    

u v v v v

v v v v

v v v v





Hence we have shown that the set of vectors  1 1 2 2 3 3, , , , n nT k k k k v v v v span n .

By

Proposition (2-17). Any n vectors which span n form a basis for n .

Hence we conclude that the set

 1 1 2 2 3 3, , , , n nT k k k k v v v v
forms a basis for n .

■

12. We need to prove:

 1 2 nA v v v is invertible   1, , nv v form a basis for n .

Proof.
This result follows from the following proposition of the last section:

Proposition (2-14). Let A be the n by n matrix whose columns are given by the vectors

1 2 3, , ,   and nvv v v :

 1 2 nA v v v
Then vectors 1 2, , , nv v v are linearly independent  matrix A is invertible.

This is because n linearly independent vectors form a basis for n .
■

13. We need to prove that n linearly independent vectors in n form a basis for n .
Proof.
If the set  1 2 3, , , , nS  v v v v of independent vectors does not span n then you

can find another vector u, which is not a linear combination of  1 2, , , nS  v v v .

Therefore a new set  1 2, , , ,nT  v v v u which consists of 1n  vectors and so by

Proposition (2-13):

Let 1 2 3, , ,  and mv v v v be different vectors in n . If n m , that is the value of n

in the n – space is less than the number m of vectors, then the vectors

1 2 3, , ,  and mv v v v are linearly dependent.

This set  1 2, , , ,nT  v v v u must be linearly dependent. Hence

1 1 2 2 1n n nc c c c    v v v u O where all the c’s are not zero

This implies that u can be written as a linear combination of  1 2 3, , , , nS  v v v v so

it is in the span of S. This is a contradiction because we stated above that u could not
spanned by the vectors in S.
Hence  1 2 3, , , , nS  v v v v is a set of linearly independent vectors which spans n
so it is a basis for n .

■
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14. Need to prove that any n vectors which span n form a basis for n .
Proof.
Let  1 2 3, , , , nS  v v v v be a set of n vectors which span n .

Need to show these vectors in S are linearly independent for S to be a basis for n .
Suppose the vectors in S are linearly dependent. This means one of the vectors can be
written as a linear combination of the others. Without Loss of Generality we can select
this to be the last vector nv . Hence the vector nv is a linear combination of the

remaining vectors  1 2 3 1, , , , nT  v v v v .  This set T still spans n . If this set T is

linearly dependent then keep on removing vectors until we end up with a linearly
independent set of vectors. This last set of vectors still spans n and is linearly
independent which means it is a basis for n . We have less than n vectors which are a
basis for n . This contradicts:

Proposition (2-20). Every basis of n contains exactly n vectors.

Our supposition that the vectors in  1 2 3, , , , nS  v v v v are linearly dependent must

be wrong. Hence any n vectors which span n form a basis for n .
■

15. We need to prove that any n non-zero orthogonal vectors form a basis for n .
Proof.
Let  1 2 3, , , , nS  v v v v be a set of non-zero orthogonal vectors.

If we can show that this set S of vectors is linearly independent then we are done. Why?
Because

Proposition (2-16). Any n linearly independent vectors in n form a basis for n .

Consider the linear combination

1 1 2 2 3 3 n nk k k k    v v v v O
where k’s scalars. Required to prove that the only solution is 1 2 3 0nk k k k     .

The dot product of 1 0 O v . Substituting 1 1 2 2 3 3 n nk k k k    v v v v O into

1 0 O v gives:

       

 

1 1 2 2 1 1 1 1 2 2 1 1

0 0

1 1 1

1 1

Because the 's

are orthogonal

0

n n n nk k k k k k

k

k

 

 
            

 

 

 

v
v v v v v v v v v v

v v

v

  

We have 1 1 0k v which gives 1 0k  because 1v is a non-zero vector.

Similarly by following the above process with

2 30, 0, , 0n     O v O v O v
we have 1 2 3 0nk k k k     . This means that  1 2 3, , , , nS  v v v v is a set of

linearly independent vectors.
Hence by Proposition (2-16) we conclude that  1 2 3, , , , nS  v v v v forms a basis

for n .
■
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16. Need to prove that if  1 2, , , nv v v is a basis then  1 2, , , nAv Av Av
is also a basis for n provided A is an invertible matrix.
Proof.
Required to prove  1 2, , , nAv Av Av are linearly independent. Why?

Because of the following:

Proposition (2-16). Any n linearly independent vectors in n form a basis for n .

Consider the linear combination with k’s scalars
     1 1 2 2 n nk k k   Av Av Av O (*)

Need to show that the only solution to this (*) is when all the scalars are zero;

1 2 0nk k k    . Factorizing out the matrix A gives

 1 1 2 2 n nk k k   A v v v O
We are given that matrix A is invertible so 1A exists and

1
1 1 2 2 n nk k k     v v v A O O (**)

We are also given that vectors  1 2, , , nv v v are a basis so they linearly independent

which means the only solution to (**) is with 1 2 0nk k k    .

Hence the only solution to (*) is with all the scalars are zero so  1 2, , , nAv Av Av is

linearly independent which implies it is a basis for n .
■




