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Complete Solutions to Supplementary Problems 5

1.

(i) First, we find the prime decomposition of 100:

100 = 2% x 5°.
Using formula (5.9):
(b(n):n TR | PR o P
D, b, b,

Evaluating the Euler Totient function we have

$(100) = 100[1—%}(1—%] = 40.

(ii) To find the last two digits of 2013™" we apply Euler’s Theorem:
a¢(") =1 (mod n) provided gcd(a, n) =1.
First note that 2013 =13 (mod 100). By Euler’s Theorem and the result of part
(i) we have
139 =1 (mod 100) [Because #(100) = 40}
So far
2013 =13" =1 (mod 100) (*)
Applying the division algorithm to write the index 2013 in terms of 40:
2013 = (40 x 50) +13.

Therefore using (*) we have

20132013 = (1340 )50 % 1313

B

1 x 13" = 131 (mod 100) .
*)

)

—

2

Finding powers of 13 gives
13" = 2197 = -3 (mod 100).
Using this result we have
20137 =13% = (13°) x13 [Writing index 13 = (3 4) +1]
= (=3) x13=81x13 =1053 = 53 (mod 100)
The last two digits of 2013*"** are 53.
(iii) We need to find the last two digits of 2013*"

32013

. We use the result of (*)

given in part (ii).
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First, we need to find 2013™" = x(mod 40) where z is the least non — negative
residue modulo 40. Note that 2013 = 13(m0d 40) SO

2013 = 137" = x(mod 40) (**)
Since 13 and 40 are relatively prime so we can use Euler’s Theorem with ¢(40)

which is given by

6(40) = 40[1—%][1—%] =16.

By Euler’s Theorem we have
13 = 1(mod 40) (1)
Writing the index 2013 in (**) as a multiple of 16 and any remainder we have
2013 = (125 x16) + 13.

Using the rules of indices in (**) and the result of () we have
201323 = 13208 = 131110 = (131“)125 x13" = 13" (mod 40).
Evaluating simpler powers of 13 we have
132 =169 = 9(mod 40) and 9% = 81 = 1(mod 40).

Combining these gives 13" = 1(m0d 40). Hence

9201328 = 131 = (134)3 w13 =1x13 = 13(mod 40) .
Therefore 2013*" = 40k +13.

92013

To find the last two digits of 2013*"7 , we apply Euler’s Theorem;
20132 = (mod 100) .

Substituting the index 2013*" = 40k 41 and now using (*) yields

22013
3

. k . .
92013253 = 901390813 = (20134") %2013 =1x 13" =53 (mod 100).

2013213
3 1S

The last two digits of 201 53.
(iv) Because the gcd(lOO, 2014) =2.

. In each case we write the given integer into its prime factors and then use the

formula (5.9):
oL
b,

(a) The prime decomposition of 1000 is evaluated by:

oL

D,

oL

P,

$(n)=n
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% =125 and 125=5".

Therefore 1000 = 8 x 5° = 2° x 5°. Using the above formula, we have

1 1
¢(1000) = 1000[1 - 5] [1 - g] = 400.

(b) Using that 10 000 = 10 x 1000 we have
10 000 =10x1000 =10 x 2* x5° =2x 5 x 2’ x 5* = 2* x 5*.

Again using the above formula

qb(lO 000) — 10 000

1—l 1—l = 4000 .
2 )
(c) The prime factors of 100 000 are 2 and 5 so
1 1
¢(100 000) — 100 000|1 — = |{1— 2| =40 000.
2 5)
(d) Similarly we have
1 1
% (1000 000) = 1000000 [1 - 5] [1 - g] — 400000
Since each of these numbers has the same prime factors, 2 and 5, so
1 L) S P | P S DU
2 5 10 5

1——||1——
The given integer n is 10 times larger than the previous integer so each time we

by D,
have gb(n) is 10 times larger as well.

(a) We need to evaluate ¢<2014). The prime factorization of 2014 can be

evaluated by:

% — 1007 ()

We don’t know whether 1007 is prime or composite so we need to test it.

Let p be a prime factor of 1007 then it must satisfy:

p< |\/1007

Clearly 2, 3 and 5 are not factors of 1001. Nor is 7, 11, 13 and 17 but 19 is a
factor of 1007 because

= 31.

1007 =53 and 53 is prime.

Therefore 1007 =19 x 53 which implies from (*) we have
2014 =2 x19x53.
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Using the formula qﬁ(n) =n|l— L 1— L 1— L with the above primes:
p, b, p,
¢(2014) = 2014 TP P | PR Yy
2 19 53

(b) Similarly, factorizing 2015 gives

2015 _ 403 (1)

5

We need to test whether 403 is a prime or composite integer. Let p be a prime

factor of 403 then p <

\/ﬁj:m

The prime numbers 2, 3, 5 and 11 are not factors of 403. Nor is 7 a factor.

However, 13 is a factor of 403 because
403 _
13

Using (f) we have 2015 =5x403 =5x13 x 31.

31 = 403 =13 x 31 and 31 is prime.

Applying the Euler totient formula gives
1—l 1—i 1—i = 1440.
5 13 31

2016 — 63,

32
And 63 =9x7 =3>x7. Remember 32 = 2° so we have

2016 = 32x63 =2" x 3" x 7.
The only prime factors of 2016 are 2, 3 and 7, therefore

6(2016) = 2016 [1 - %] [1 - %] [1 - %] = 576.

(d) We are given that 2017 is prime so we use Proposition (5.2):

$(2015) = 2015

(c) Factorizing 2016 we have

If p is prime, then gb(p) =p—1.

¢(2017) = 2017 — 1 = 2016.

4. We need to find natural numbers such that gb(n) = 4?” Using the formula for

[0) (n) we have

L

b,

P

$(n)=mn )
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The prime 5 must be a factor of n because on the right-hand side we have a

denominator of 5. Also 1 —% = % therefore there is only one prime factor of n

which is 5. Hence n = 5" where m is a natural number.
. We need to find the last three digits of 2011**"". This means we need to work
with modulo 1000. From solution to question 2(a) we have
¢(1000) = 400 .
We use Euler’s Theorem (5.14):

a‘p(") =1 (mod n) provided ged (a, n) =1

In order to apply this we first need to evaluate gcd(lOOO, 2011). By the

Fuclidean algorithm we have
2011 = (2x1000) + 11
1000 = (90 x 11} 410
11=(1x10)+1

The gcd(lOOO, 2011) =1 so we can apply Euler’s Theorem:

1000)

2011 = 2011" = 1 (mod 1000) (%)

We need to find 2011*™ =7 (mod 1000) )

Simplifying this 2011 =11 (mod 1000) because it is easier to work with residue
11 rather than 2011. This implies that we have to evaluate

2011 = 11" = 7 (mod 1000) (%)
By (*) we have 2011"" = 11" =1 (mod 1000). Writing the index 2011 in terms

of 40 by using the division algorithm:
2011 = (5x400) + 11.

Using this in (**) yields
111 = 117 = (1) 511" =11 (mod 1000) (1)
We need to find the least non-negative residue 11" (mod 1000). Evaluating
powers of 11 gives
11 =121, 11° =1331, 11" =641, 11° =51 (mod 1000).

Writing the index 11 as a multiple of 5 plus any remainder and working out the

least non-negative residue we have
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B 12
11" =117 = (11°) x11=51x11 = 611(mod 1000).
Putting this into (f) gives 11" = 611 (mod 1000). The last three digits of
20112 is 611.

. Since we are given that n is odd so gecd (2’”, n) = 1. Applying the

multiplicative property of the ¢ function to the given ¢(2mn) we have
8(2"n) = o(2")o(n)

:Tp_ﬂqﬂzzﬂngzzwww

. We need to solve 23z =5 (mod 100) . If we try to solve the equivalent

Diophantine equation, then we would need to solve

_ 1+100y
23
This is difficult to solve because we need both z and y to be integers.

23z —100y =1 = =z

We use the result established in question 12(b) of Exercises 5.2:

If ged (a, n) =1 and az = b(mod n) then z = ba’"".
We use this =z = ao(")flb (mod n) to solve 23z =5 (mod 100) . First, we need to

check that gcd(23, 100) — 1 which it is.
We have evaluated gb(lOO) = 40 in question 1(i). Using the given result with
a=23,b=>5 and n =100 we have:

v =a""" b= 23" x5 = 23" x5 (mod 100) (1)
Evaluating powers of 23:

23 =29, 23° =67, 23' =41, 23° =43, 23° =89 =11 (mod 100).
Working with —11 is much easier than working with 23. Writing the index 39
as a multiple of 6 and a remainder gives

39 = (6x6)+3.
Therefore, we have

23% = 230" = (23“)6 x 23 = (~11) x 23’ = 61x 67 = 87 (mod 100).

Substituting this result 23* = 87 (mod 100) into (1) gives
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=923 x5=87x5=35 (modloo).

The solution of 23z = 5 (mod 100) is =35 (mod 100).

. We are given that n = 2"3" and need to show that ¢(n> = g

1L
b,
1

fb(n) = d>(2”‘3k) - n[1_§

Proof.

TR I F

P, P,
o n

s

Using the formula qf)(n) =n with p =2 and p, = 3:

3

This completes our proof.

This ¢(n> = g means that one third of the integers between 1 and n have a

common factor of only 1 with n. Only one third of residues modulo n have an

inverse.

(i) The given result (b(n) = g means that half the integers between 1 and n
have an inverse modulo n.
(ii) We are asked to prove that if (b(n) = g then n = 2". (See question 5 of

Exercises 5.1).

Proof.

Let the prime decomposition of n = plk1 X ka2 X ee X prk“' where p’s are distinct
. . 1 1 1 .
primes. By using the formula qﬁ(n) =n|l——||1——]--+|1 ——| and equating

p, b, p,
to n /2 we have
1 1 1 1
qf)(n):n l——|1——|1-=]=2=p —].
, D, p.] 2 2
Cancelling out the n’s on both sides gives
TP | PR I PO *)
D, P, | 2

Remember we are informed that p’s are distinct primes so the only solution to

this equation (*) is p, = 2 and there are no other primes. Why?



10.

11.
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Suppose there were other primes apart from 2 then the product

1 1 1
1—— 1——<—=.
P, p.) 2
Hence, we have our required result because n can only have the prime 2 so

n_27’ll

(i) We need to evaluate 3* + 3° + 2(3) = ?(mod 4):
3'+3" +2(3) = 814946 =96 = 0(mod 4.
(ii) Now we need to show this is always the case a' + a’ +2a = O(mod 4).

Proof.

If a is an even number then substituting a = 2m into the given congruence will

be a multiple of 4 because a' + a* + 2a = 4k = O(mod 4).
If a is odd then gcd(a, 4) =1 and so we can use Euler’s Theorem (5.14):
a¢(") =1 (mod n) provided ged (a, n) =1
The Euler totient function of gb<4) =2s0a° =1 (mod 4). Squaring this gives
(a2)2 =ad' =1 (mod 4).
As we are assuming a is odd which we can write as a = 2m + 1. Therefore

20=2(2m +1) = 4m +2=2 (mod 4).
Substituting o = 1 (mod 4), at =1 (mod 4) and 2a = 2 (mod 4) into the given
congruence a* + a’ + za(mod 4) vields
@' +a’+20=1+142=4=0(mod 4).

This completes our proof.

(a) We are given n =1299 709 x 15 485 863 and we need to find gb(n)
We are also told that both of these are prime numbers. Using Proposition (5.2):
If p is prime then (b(p) =p—1.

And the property that Euler’s phi function is multiplicative we have



12.

13.
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¢(n) = ¢(1 299 709 x 15 485 863)

- ¢(1 209 709) x ¢(15 485 863)
— 1299 708 x 15 485 862 = 20 127 098 728 296

(b) Similarly we have

o(n)= ¢(1726 943 % 179 424 673)

- ¢(1 726 943) x ¢(179 424 673)
— 1726 942 x 179 424 672=309 856 001 913 024

(i) We need to evaluate ¢(561) . Since 561 = 3x11x 17 and each of these

factors are prime we have
$(561) = ¢(3x11x17)
= ¢(3)x ¢ (11)x 6(17)
=2x10x16 = 320

This ¢(561> = 320 means there are 320 positive integers between 1 and 561
which have no factor in common with 561 apart from the trivial factor of 1.
(ii) We need to show 2™ =1 (mod 561). Evaluating powers of 2 by using the
given hint we have:

910 = 463 = —98 (mod 561), 2" = (-98) =67, 2° =67 =1 (mod 561)

. 8
Since 320 = 8 x 40 so 2% = (24°> =1 (mod 561).
(iii) By part (ii) we have A = 40.
(iv) In this case A ‘ ¢(561).

(i) The integer 111 is composite because 3 is factor of 111 as the sum of the
digits 1+1+1=3 and 3 ‘ 3. The other factor can be found by dividing 111 by

3 which gives 37. Both these integers 3 and 37 are prime factors of 111.
Evaluating the Euler phi function of 111:
(111) = ¢(3 % 37)
= (3)x6(37)
=2x36="72
(ii) Let the set S = {O, 1,23, 111} be the set of least non-negative residues

modulo 111. Let a be in this set. Then it has a multiplicative inverse if we have
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a solution for ar =1 (mod 111) . This linear congruence
az =1 (mod 111).

has a solution if and only if gcd(a, 111) =1. How many residues in the set S
are relatively prime to 1117
Since ¢ (111) = 72 so there are 72 residues which will have a multiplicative

inverse and there are 111 — 72 = 39 which will not have a multiplicative inverse

modulo 111.

14. How do we prove gb(lO"Z) = 4x10"7" 7

oL

b,

oL

Dy

Evaluate ¢(10"’2) by using the formula qﬁ(n) =n and

B PR
p,

then derive this is actually equal to 4 x 107"
Proof.

The factors of 10 are 2 and 5 so we have
(]5(10712 ) _ ¢[[2 y 5]71 ]
= (;5([2"2 x 5" D

) ) By the multiplicative propert
:¢(2")x¢(5“) y p property

because the ged of 2 and 5 is 1

Using the above formula to evaluate each of these terms on the right-hand side:
77,2 n2 71,2 712 1 n2 1
gb(lO ): ¢(2 )><¢(5 ):2 [1—5] 5 [1—3]

e A b
2 5

— 4(277,271571,271)
- 4(10”“1) — 4x10"

This completes our proof.

15. (a) The given statement - if a =b (mod n) then gb(a) = (b(b) is false because
100 = 5 (mod 95) but ¢ (100) = 40 = 4 = ¢ (5).
(b) Statement (b) which claims ‘if a =b (mod n) then ¢(a) = qb(b) (mod n)’

is also false because



16.

17.
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100 =5 (mod 95) but ¢(100) = 40£4 = 6(5)(mod 95).

(c) This statement ‘If a =b (mod n) then qb(a) = ¢(b) (mod ¢(n)) may be

true.” Let us check with the above numbers:
100 =5 (mod 95| .
We have gb(lOO) = 40, ¢(5) = 4. We need to evaluate ¢<95).
The prime factorization of 95 is 95 = 5x 19 so
(95)=¢(5)x ¢(19) = 4x18 = 72.
Hence the given statement is false because

40£4 (mod 72) .

We need to prove (;5(2” —1) =27 2P 4 1 2% + 2 where 27 —1 is
Proof.

Since we are given that 2’ —1 is prime so we use (5.2):
d)(q) = q — 1 where q is prime.

Applying this with ¢ =2 —1 we have
o2 —1)=2"-1-1
=2 —2
=2(2" —1)
= 2(2 — 1)(21’*2 L 4 424 1) [By (:1:” _ 1) _ (:E _ 1)(35”,1 v
=2(2? 4277 44 241
=2" 42 42 42

We have proved the required result.

¢ (500)

(a) We need to evaluate . The prime factorization of 500 is

500 = 4x 125 = 2* x 5°.

By applying the formula qﬁ(n):n 1—i 1—i 1—i :
Y2 b, p,
¢(500) = 500 -2l =L = 200,
2 5

The probability that a number is relatively prime to 500 is
$(500) 200 2

500 500 5

prime.

a1
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(b) We are given that n = 929 is prime so by (5.2):
10} (q) = q¢ — 1 where ¢ is prime
We have ¢(929) =929 —1 = 928.

The probability that a number is relatively prime to 929 is
$(929) 928

929 929
(c) This time n = 111x929. The integer 929 is prime but 111 is composite.

Clearly 3 is a factor of 111 because the sum of the digits 1+1+1=3 and
3| 3. Therefore

igl = 37 implies that 111 =3 x37.

This implies that ged (111, 929) = 1. This means that we can use the

multiplicative property of the Euler totient function:
$(111x929) = ¢ (111) $(929)

= (3% 37)(929)

= ¢(3)0(37)¢(929)

=2x36 x928 [Because 3, 37 and 929 are prime

= 66 816
The probability that a chosen number is relatively prime to 111x 929 = 103119
is

6(111x920)  #(103119) 66816

= = = 0.65 (2dp).
111x 929 103 119 103 119
65% of the numbers below 103 119 are relatively prime to it.
o(p
We need to prove ﬁ =1- l
p p

Proof.
Given that p is prime we have ¢(p) =p—1 so

gb(p) _p—1 1 1

p p p

This result signifies that the probability that a chosen number is relatively

prime to a prime number is close to 1 for large prime p.

18. We need to find all the residues that are relatively prime to 30 and these are
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{1, 7,11,13,17,19, 23, 29}. Note that these are all the prime numbers below 30

apart from 2, 3 and 5, only 1 is not a prime.

19. (i) We are asked to prove that gb(qb(p’”)) = [p"“l — p”“?}d)(p — 1).
Proof.
By Proposition (5.4):

Using this we have
olols™)) = ol -5
=o[p (v 1)
The ged of p”™' and p —1 is 1 because the prime p cannot be a factor of p —1.
Using the multiplicative property of the ¢ function:

gb(mn) = c;S(m)qb(n) provided gcd(m, n) =1
in the above derivation gives
olofs)) = ol (p-1)
=o(p"")o(p-1)
= [p’”’l — p"“]cb(p ~1) [By cb(p’“) =p" - p’“}

(ii) Now we need to prove gb(qb(p’”)) =" [(p — 1)2].

Proof.

From the result of part (i) we have
slofrm)) =[p" = »olp -1
=r(p-1o(p-1) (1)
We use the result of question 7 of Exercise 5.1:
n"9(n) = o(n")
Applying this result to (p — 1)(;5(]9 — 1) with n = p—1 and m = 2 gives
(p=1)o(p—1)=o|(p -],
Substituting this into (T) gives
¢(¢(pm)) =p"(p-1)o(p—1)= pmqﬁ[(p - 1)2] :

This is our required result.
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20. We are given that n = plk1 X p,zk2 X pfi‘ and need to show

21

¢(n) = [pf“l X p,* % p;’f‘*l]cb(pl)qb(pz)szﬁ(m)-
Proof.

Since n = plkl X p;2 X p3k" so by using formula (5.9):
-1
b,

o(n)=o(p" xp," xp")

oL

D,

oL

D,

$(n)=n

We have

k, k. k.
— pll ><p22 ngg]

p, —1

p ) »,
=|p" X" X pskrl](pl - 1)(;02 - 1)(p3 B 1)
= |p" " xp X o (p)o(p,) 0 (p))

This is our required result.

k, k, k,
=|p, " Xp,* Xp, ]

. (a) We need to show that if n is odd then (b(2n) = ¢(n>

Proof.
We are given that n is odd therefore ged (2, n) = 1. Applying the
multiplicative property of Euler’s phi function gives
$(2xn)=0(2)xo(n)
= 1><¢(n) = ¢(n)

We have our required result.

(b) This time we are asked to prove that if n is even then ¢<2n> = 2¢(n> .
Proof.

Let n = 2"a where a is odd and k is a natural number. By using the

multiplicative property of the Euler’s phi function we have
¢(2n) = ¢>(2 x 2%) = ¢(2k“a) = ¢(2k”)¢(a).
By the result of question 5 of Exercise 5.1:



22.

23.
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of) - L)
Using this in the above derivation gives
6(2n) = 9(2")8(a) = 2'0(a) = 2(2¢(c)
Applying the above boxed result to the last line gives
6(2n) = 2(2"6(a)) = 2(6(2") 6 (o))
Since a is odd so the gcd(2k, a) =1 and using the multiplicative property
¢(2n) = 2(¢(2k)q5(a)) =26(2" xa) =26(n) [Because 2" xa=n

This completes our proof.

We need to show that the following is false:
If gcd(ml, m,, -, mk)zl then

)
gb(ml X M, X e X mk> = ¢(ml)>< ¢>(m2)>< e X ¢(mk>
Let m =8, m, =9 and m, =10 then using the given gcd of three integers
we have
ged(s, 9, 10) = gcd(s, ged (9, 10)) = ged(8, 1)=1.
Evaluating the Euler phi function of the product 8 x 9 x 10 gives
$(8x9x10)=192.

However

¢(8x9x10) : j(sgxi(j);(p(m)

Thus we have produced an example where

(8% 9x10) =192 = 96 = ¢(8) x 6(9) x 6(10).

oln)

n

(i) We need to find a formula for

Let n = pl"l pQ"‘z prkv' be the prime decomposition of n. By formula (5.9):

-2
b,

1——
b,

oL

qf)(n): n )

Applying this gives
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1 1 1
ot Aol
no #
:1_L1_L}F_i]
P, P, p.

— p _ 1 p _ 1 “ee p’r _ 1 — 1 J— J— cee J—

N 1p1 2192 ] b, | PP, =3 =2)<(r, 1)
(ii) We need to prove that if ¢<n) ‘ n then ﬁ =3.
Proof.

Which integers satisfy ¢(n) ‘ n?

Using the result of part (i) with ' __ o where a is an integer gives
¢(n)
n 1

=

- - plp2 . pr
¢(n) (p, = 1)(p, = 1)-(p, -1)
pp,p, = a(p =1)(p, =1)-(p, ~1]
Note that for primes p > 5 the expression p —1 is not prime. Why not?
Because for p > 5 we have p —1 is even and the only even prime is 2.

Sy sy

contains the primes p, =2 and p, = 3. Evaluating this integer

This implies that p p,--p is an integer only if it

n :2><3—1 =3.

on) —(2-1)(3-1)

This is our required result.

We need to prove that ¢(ma)¢(mb) = [¢(m)r ¢(a)¢(b) where m, aand b are
pairwise prime.

Proof.

We are given that m, a and b are pairwise prime. What does this mean?
gcd(m, a) = gcd(m, b) = gcd(a, b) =1.

By the multiplicative property of the Euler phi function we have



25.
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This completes our proof.

(a) The divisors of n =10 are d =1, 2,5 and 10. Thus, the sum
220(d)=0(1)+6(2) + 0 (5) + 6(10)
b =1+1+4+4=10

(b) The factors of 15 are d =1, 3,5 and 15. Finding the sum Z¢(d) for

d‘n
n =15 gives

Do) =0(1)+0(3)+6(5) +(15)

dln
| =142+44+8=15
(c) In a similar manner we have the divisors of n = 24 are
d=1,2,3,4,6,8 12 and 24.
We need to find ¢ of each of these. The first three are simple enough and the
remaining are given by

s(1)=2, ¢(6)=2, ¢(8):¢(23):23—22 =4, ¢(12):12[1—%][1—1]:4.

i

Substituting each of these into the evaluation of Z ¢(d) gives

d‘n

The Euler totient function 24 is ¢<24> =24

Soo(d)=0(1)+0(2)+6(3)+0(4)+0(6)+0(8)+o(12)+¢(24)
=14+1+2424+2+4+4+8=24
Note that in each case we have Zd)(d) =n.

d‘n



