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Complete Solutions to Supplementary Problems 5 
 

1. (i) First, we find the prime decomposition of 100: 
2 2100 2 5  . 

Using formula (5.9): 

 
1 2

1 1 11 1 1
r

n n
p p p


                             

  

Evaluating the Euler Totient function we have 

  1 1100 100 1 1 40
2 5


   

      
   

. 

(ii) To find the last two digits of 20132013  we apply Euler’s Theorem:  
   1 modna n   provided  gcd , 1a n  . 

First note that  2013 13 mod 100 . By Euler’s Theorem and the result of part 

(i) we have 

   4013 1 mod 100 Because  100 40     

So far 

 40 402013 13 1 mod 100   (*) 

Applying the division algorithm to write the index 2013 in terms of 40: 

 2013 40 50 13   . 

Therefore using (*) we have 

    502013 40 13 50 13 13

By (*)

2013 13 13 1 13 13 mod 100     . 

Finding powers of 13 gives  

 313 2197 3 mod 100   . 

Using this result we have  

   
   

42013 13 3

4

2013 13 13 13 Writing index 13 3 4 1

3 13 81 13 1053 53 mod 100

        
      

 

The last two digits of 20132013  are 53. 

(iii) We need to find the last two digits of 
201320132013 . We use the result of (*) 

given in part (ii).  
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First, we need to find  20132013 mod 40x  where x is the least non – negative 

residue modulo 40. Note that  2013 13 mod 40  so  

 2013 20132013 13 mod 40x    (**) 

Since 13 and 40 are relatively prime so we can use Euler’s Theorem with  40  

which is given by  

  1 140 40 1 1 16
2 5


               

. 

By Euler’s Theorem we have  

 1613 1 mod 40    (�) 

Writing the index 2013 in (**) as a multiple of 16 and any remainder we have 

 2013 125 16 13   . 

Using the rules of indices in (**) and the result of (�) we have 
     125125 16 132013 2013 16 13 132013 13 13 13 13 13 mod 40      . 

Evaluating simpler powers of 13 we have  

 213 169 9 mod 40    and  29 81 1 mod 40  .  

Combining these gives  413 1 mod 40 . Hence  

   32013 13 42013 13 13 13 1 13 13 mod 40      . 

Therefore 20132013 40 13k  .  

To find the last two digits of 
201320132013 , we apply Euler’s Theorem;  

 201320132013 mod 100y . 

Substituting the index 20132013 40 1k   and now using (*) yields 

   20132013 40 13 40 13 132013 2013 2013 2013 1 13 53 mod 100
kk      . 

The last two digits of 
201320132013  is 53.  

(iv) Because the  gcd 100, 2014 2 . 

 
2. In each case we write the given integer into its prime factors and then use the 

formula (5.9): 

 
1 2

1 1 11 1 1
r

n n
p p p


                             

  

(a) The prime decomposition of 1000 is evaluated by: 
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31000 125 and   125 5
8

  . 

Therefore 3 3 31000 8 5 2 5    . Using the above formula, we have 

  1 11000 1000 1 1 400
2 5


               

. 

(b) Using that 10 000 10 1000   we have  
3 3 3 3 4 410 000 10 1000 10 2 5 2 5 2 5 2 5           . 

Again using the above formula 

  1 110 000 10 000 1 1 4000
2 5


               

. 

(c) The prime factors of 100 000 are 2 and 5 so 

  1 1100 000 100 000 1 1 40 000
2 5


               

. 

(d) Similarly we have 

  1 11000 000 1000000 1 1 400000
2 5


               

. 

Since each of these numbers has the same prime factors, 2 and 5, so  

1 2

1 1 1 1 4 21 1 1 1
2 5 10 5p p

                                      
. 

The given integer n is 10 times larger than the previous integer so each time we 
have  n  is 10 times larger as well. 

 
3. (a) We need to evaluate  2014 . The prime factorization of 2014 can be 

evaluated by: 
2014 1007

2
   (*) 

We don’t know whether 1007 is prime or composite so we need to test it. 
Let p be a prime factor of 1007 then it must satisfy: 

1007 31p     
. 

Clearly 2, 3 and 5 are not factors of 1001. Nor is 7, 11, 13 and 17 but 19 is a 
factor of 1007 because   

1007 53
19

  and 53 is prime. 

Therefore 1007 19 53   which implies from (*) we have 
2014 2 19 53   . 
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Using the formula  
1 2

1 1 11 1 1
r

n n
p p p


                             

  with the above primes: 

  1 1 12014 2014 1 1 1 936
2 19 53


                          

. 

(b) Similarly, factorizing 2015 gives 
2015 403

5
   (�) 

We need to test whether 403 is a prime or composite integer. Let p be a prime 

factor of 403 then 403 20p     
.  

The prime numbers 2, 3, 5 and 11 are not factors of 403. Nor is 7 a factor. 
However, 13 is a factor of 403 because  

403 31 403 13 31
13

     and 31 is prime. 

Using (�) we have 2015 5 403 5 13 31     .  
Applying the Euler totient formula gives 

  1 1 12015 2015 1 1 1 1440
5 13 31


                          

. 

(c) Factorizing 2016 we have 
2016 63
32

 . 

And 263 9 7 3 7    . Remember 532 2  so we have 
5 22016 32 63 2 3 7     . 

The only prime factors of 2016 are 2, 3 and 7, therefore 

  1 1 12016 2016 1 1 1 576
2 3 7


                          

. 

(d) We are given that 2017 is prime so we use Proposition (5.2): 

If p is prime, then   1p p   . 

 2017 2017 1 2016    . 

 

4. We need to find natural numbers such that   4
5
nn  . Using the formula for 

 n  we have 

 
1 2

1 1 1 41 1 1
5r

n n n
p p p


                              

 . 
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The prime 5 must be a factor of n because on the right-hand side we have a 

denominator of 5. Also 1 41
5 5

   therefore there is only one prime factor of n 

which is 5. Hence 5mn   where m is a natural number. 
5. We need to find the last three digits of 20112011 . This means we need to work 

with modulo 1000. From solution to question 2(a) we have 

 1000 400  . 

We use Euler’s Theorem (5.14): 
   1 modna n   provided  gcd , 1a n   

In order to apply this we first need to evaluate  gcd 1000, 2011 . By the 

Euclidean algorithm we have 

 
 
 

2011 2 1000 11
1000 90 11 10

11 1 10 1

  
  
  

 

The  gcd 1000, 2011 1  so we can apply Euler’s Theorem: 
   1000 4002011 2011 1 mod 1000    (*) 

We need to find  20112011 ? mod 1000 .  

Simplifying this  2011 11 mod 1000  because it is easier to work with residue 

11 rather than 2011. This implies that we have to evaluate 

 2011 20112011 11 ? mod 1000    (**) 

By (*) we have  400 4002011 11 1 mod 1000  . Writing the index 2011 in terms 

of 40 by using the division algorithm: 

 2011 5 400 11   . 

Using this in (**) yields 
     55 400 112011 400 11 1111 11 11 11 11 mod 1000       (�) 

We need to find the least non-negative residue  1111 mod 1000 . Evaluating 

powers of 11 gives 

 2 3 4 511 121, 11 1331, 11 641, 11 51 mod 1000    . 

Writing the index 11 as a multiple of 5 plus any remainder and working out the 
least non-negative residue we have 
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     25 2 111 5 211 11 11 11 51 11 611 mod 1000       . 

Putting this into (�) gives  201111 611 mod 1000 . The last three digits of 
20112011  is 611. 

 

6. Since we are given that n is odd so  gcd 2 , 1m n  . Applying the 

multiplicative property of the   function to the given  2mn  we have 

     
     1

2 2
1 12 1 2 2
2 2

m m

m m m

n n

n n n

  

  


                 

 

 

7. We need to solve  23 5 mod 100x  . If we try to solve the equivalent 

Diophantine equation, then we would need to solve 
1 10023 100 1

23
yx y x     . 

This is difficult to solve because we need both x and y to be integers.  
We use the result established in question 12(b) of Exercises 5.2: 

If  gcd , 1a n   and  modax b n  then   1nx ba  . 

We use this    1 modnx a b n   to solve  23 5 mod 100x  . First, we need to 

check that  gcd 23, 100 1  which it is. 

We have evaluated  100 40   in question 1(i). Using the given result with 

23a  , 5b   and 100n   we have: 
   1 40 1 3923 5 23 5 mod 100nx a b          (�) 

Evaluating powers of 23: 

 2 3 4 5 623 29, 23 67, 23 41, 23 43, 23 89 11 mod 100      . 

Working with 11  is much easier than working with 23. Writing the index 39 
as a multiple of 6 and a remainder gives 

 39 6 6 3   . 

Therefore, we have 
       6 66 6 339 6 3 323 23 23 23 11 23 61 67 87 mod 100          . 

Substituting this result  3923 87 mod 100  into (�) gives 
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 3923 5 87 5 35 mod 100x      . 

The solution of  23 5 mod 100x   is  35 mod 100x  . 

 

8. We are given that 2 3m kn   and need to show that   3
nn  . 

Proof. 

Using the formula  
1 2

1 1 11 1 1
r

n n
p p p


                             

  with 1 2p   and 2 3p  : 

    1 1 12 3 1 1
2 3 2

m kn n n 
                

2      3 3
n      

. 

This completes our proof. 
■ 

This   3
nn   means that one third of the integers between 1 and n have a 

common factor of only 1 with n. Only one third of residues modulo n have an 
inverse. 
 

9. (i) The given result   2
nn   means that half the integers between 1 and n 

have an inverse modulo n. 

(ii) We are asked to prove that if   2
nn   then 2mn  . (See question 5 of 

Exercises 5.1). 
Proof. 

Let the prime decomposition of 1 2
1 2

rk k k
rn p p p     where p’s are distinct 

primes. By using the formula  
1 2

1 1 11 1 1
r

n n
p p p


                             

  and equating 

to / 2n  we have 

 
1 2

1 1 1 11 1 1
2 2r

nn n n
p p p


                                         

 . 

Cancelling out the n’s on both sides gives 

1 2

1 1 1 11 1 1
2rp p p

                             
  (*) 

Remember we are informed that p’s are distinct primes so the only solution to 
this equation (*) is 1 2p   and there are no other primes. Why? 
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Suppose there were other primes apart from 2 then the product  

2

1 1 11 1
2rp p

                 
 . 

Hence, we have our required result because n can only have the prime 2 so 
2mn  . 

■ 

10. (i) We need to evaluate    4 23 3 2 3 ? mod 4   : 

   4 23 3 2 3 81 9 6 96 0 mod 4       . 

(ii) Now we need to show this is always the case  4 2 2 0 mod 4a a a   . 

Proof. 
If a is an even number then substituting 2a m  into the given congruence will 

be a multiple of 4 because  4 2 2 4 0 mod 4a a a k    .  

If a is odd then  gcd , 4 1a   and so we can use Euler’s Theorem (5.14): 

   1 modna n   provided  gcd , 1a n   

The Euler totient function of  4 2   so  2 1 mod 4a  . Squaring this gives 

   22 4 1 mod 4a a  . 

As we are assuming a is odd which we can write as 2 1a m  . Therefore 

   2 2 2 1 4 2 2 mod 4a m m     . 

Substituting  2 1 mod 4a  ,   4 1 mod 4a   and  2 2 mod 4a   into the given 

congruence  4 2 2 mod 4a a a   yields 

 4 2 2 1 1 2 4 0 mod 4a a a       . 

This completes our proof. 
■ 

 
11.  (a) We are given 1 299 709 15 485 863n    and we need to find  n . 

We are also told that both of these are prime numbers. Using Proposition (5.2): 

If p is prime then   1p p   . 

And the property that Euler’s phi function is multiplicative we have 
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   
   
1 299 709 15 485 863

1 299 709 15 485 863
1 299 708 15 485 862 20 127 098 728 296

n 

 

 

 
  

 

(b) Similarly we have 

   
   
1726 943 179 424 673

1726 943 179 424 673
1726 942 179 424 672=309 856 001 913 024

n 

 

 

 
 

 

 
12. (i) We need to evaluate  561 . Since 561 3 11 17    and each of these 

factors are prime we have 

   
     

561 3 11 17
3 11 17

2 10 16 320

 
  

  
  
   

 

This  561 320   means there are 320 positive integers between 1 and 561 

which have no factor in common with 561 apart from the trivial factor of 1. 

(ii) We need to show  3202 1 mod 561 . Evaluating powers of 2 by using the 

given hint we have: 

     210 20 40 22 463 98 mod 561 , 2 98 67, 2 67 1 mod 561         

Since 320 8 40   so    8320 402 2 1 mod 561  .  

(iii) By part (ii) we have 40  . 

(iv) In this case  561  .  

 
13. (i) The integer 111 is composite because 3 is factor of 111 as the sum of the 

digits 1 1 1 3    and 3 3 . The other factor can be found by dividing 111 by 

3 which gives 37. Both these integers 3 and 37 are prime factors of 111. 
Evaluating the Euler phi function of 111: 

   
   

111 3 37
3 37

2 36 72

 
 

 
 
  

 

(ii) Let the set  0, 1, 2, 3, , 111S    be the set of least non-negative residues  

modulo 111. Let a be in this set. Then it has a multiplicative inverse if we have  
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a solution for  1 mod 111ax  . This linear congruence  

 1 mod 111ax  . 

has a solution if and only if  gcd , 111 1a  . How many residues in the set S 

are relatively prime to 111? 
Since  111 72   so there are 72 residues which will have a multiplicative 

inverse and there are 111 72 39   which will not have a multiplicative inverse 
modulo 111. 
 

14. How do we prove  2 2 110 4 10n n   ? 

Evaluate  2
10n  by using the formula  

1 2

1 1 11 1 1
r

n n
p p p


                             

  and 

then derive this is actually equal to 
2 14 10n  . 

Proof. 
The factors of 10 are 2 and 5 so we have 

 
 
   

2
2

2 2

2 2

10 2 5

2 5

By the multiplicative property
2 5

because the gcd of 2 and 5 is 1

nn

n n

n n

 



 

        
    

 
    
  

 

Using the above formula to evaluate each of these terms on the right-hand side: 

     

 
 

2 2 2 2 2

2 2

2 2

2 2

1 1

1 1

1 110 2 5 2 1 5 1
2 5

1 42 5
2 5

4 2 5

4 10 4 10

n n n n n

n n

n n

n n

  

 

 

                   
               



  

 

This completes our proof. 
■ 

 

15. (a) The given statement - if  moda b n  then    a b   is false because 

 100 5 mod 95  but    100 40 4 5    . 

(b) Statement (b) which claims ‘if  moda b n  then      moda b n  ’ 

is also false because 
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 100 5 mod 95  but  100 40     4 5 mod 95 . 

(c) This statement ‘If  moda b n  then       moda b n    may be 

true.’ Let us check with the above numbers: 

 100 5 mod 95 . 

We have    100 40, 5 4   . We need to evaluate  95 . 

The prime factorization of 95 is 95 5 19   so 

     95 5 19 4 18 72       . 

Hence the given statement is false because  

40  4 mod 72 . 

 

16. We need to prove   1 2 22 1 2 2 2 2p p p         where 2 1p   is prime. 

Proof. 
Since we are given that 2 1p   is prime so we use (5.2): 

  1q q    where q is prime. 

Applying this with 2 1pq    we have 

 

 
       
 

1

2 3 1 2

2 3

1 2 2

2 1 2 1 1
2 2
2 2 1

2 2 1 2 2 2 1 By 1 1 1

2 2 2 2 1
2 2 2 2

p p

p

p

p p n n n

p p

p p

x x x x x





   

 

 

   
 
 

               
    
    

 




 

We have proved the required result. 
■ 

 

17. (a) We need to evaluate 
 500
500


. The prime factorization of 500 is 

2 3500 4 125 2 5    . 

By applying the formula  
1 2

1 1 11 1 1
r

n n
p p p


                             

 : 

  1 1500 500 1 1 200
2 5


               

. 

The probability that a number is relatively prime to 500 is  

 500 200 2 0.4
500 500 5


   . 
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(b) We are given that 929n   is prime so by (5.2): 

  1q q    where q is prime 

We have  929 929 1 928    .  

The probability that a number is relatively prime to 929 is  

 929 928
929 929


 . 

(c) This time 111 929n   . The integer 929 is prime but 111 is composite. 
Clearly 3 is a factor of 111 because the sum of the digits 1 1 1 3    and  

3 3 . Therefore  

111 37
3

  implies that 111 3 37  . 

This implies that  gcd 111, 929 1 . This means that we can use the 

multiplicative property of the Euler totient function: 

     
   
     

111 929 111 929
3 37 929
3 37 929

2 36 928 Because 3, 37 and 929 are prime
66 816

  
 
  

 
 


      


 

The probability that a chosen number is relatively prime to 111 929 103119   
is  

   103 119 66 816111 929
0.65 (2dp)

111 929 103 119 103 119

 
  


. 

65% of the numbers below 103 119 are relatively prime to it. 

We need to prove 
  11
p

p p


  . 

Proof. 
Given that p is prime we have   1p p    so  

  1 11
p p

p p p
    . 

■ 
This result signifies that the probability that a chosen number is relatively 
prime to a prime number is close to 1 for large prime p.  
 

18. We need to find all the residues that are relatively prime to 30 and these are 
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 1, 7, 11, 13, 17, 19, 23, 29 . Note that these are all the prime numbers below 30 

apart from 2, 3 and 5, only 1 is not a prime. 
 

19. (i) We are asked to prove that     1 2 1m m mp p p p         . 

Proof. 
By Proposition (5.4): 

  1k k kp p p    

Using this we have 

  
 

1

1 1

m m m

m

p p p

p p

  







    
    

 

The gcd of 1mp   and 1p   is 1 because the prime p cannot be a factor of 1p  . 
Using the multiplicative property of the   function: 

       provided  gcd , 1mn m n m n     

in the above derivation gives 

    
   

   

1

1

1 2 1

1

1

1 By  

m m

m

m m k k k

p p p

p p

p p p p p p

  

 

 





  

    
 

           

 

■ 

(ii) Now we need to prove     22 1m mp p p         . 

Proof. 
From the result of part (i) we have  

    
     
1 2

2

1
1 1 �

m m m

m

p p p p
p p p

  


 



     
  

 

We use the result of question 7 of Exercise 5.1: 

   1m mn n n    

Applying this result to    1 1p p   with 1n p   and 2m   gives 

     21 1 1p p p         
. 

Substituting this into  �  gives 

        22 21 1 1m m mp p p p p p             
. 

This is our required result. 
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■ 
 

20. We are given that 1 2 3
1 2 3
k k kn p p p    and need to show  

       1 2 31 1 1
1 2 3 1 2 3
k k kn p p p p p p           . 

Proof. 

Since 1 2 3
1 2 3
k k kn p p p    so by using formula (5.9): 

 
1 2

1 1 11 1 1
r

n n
p p p


                             

  

We have 

   1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3
1 2 3

1 2 3
1 2 3

1 2 3
1 1 1

1 2 3 1

1 1 11 1 1

1 1 1

k k k

k k k

k k k

k k k

n p p p

p p p
p p p

p p p
p p p

p p p
p p p p

 

  

  
                                   
                                   

         
     1 2 3

2 3
1 1 1

1 2 3 1 2 3

1 1 1
k k k

p p

p p p p p p    

  
     

 

This is our required result. 
■ 
 

21. (a) We need to show that if n is odd then    2n n  . 

Proof. 

We are given that n is odd therefore  gcd 2, 1n  . Applying the 

multiplicative property of Euler’s phi function gives 

     
   

2 2
1

n n
n n

  
 

  
  

 

We have our required result. 
■ 

(b) This time we are asked to prove that if n is even then    2 2n n  . 

Proof. 
Let 2kn a  where a is odd and k is a natural number. By using the 
multiplicative property of the Euler’s phi function we have 

         1 12 2 2 2 2k k kn a a a         . 

By the result of question 5 of Exercise 5.1: 
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    112 2 2
2

n n n    

Using this in the above derivation gives 

          1 12 2 2 2 2k k kn a a a         

Applying the above boxed result to the last line gives 

         12 2 2 2 2k kn a a      

Since a is odd so the  gcd 2 , 1k a   and using the multiplicative property  

          2 2 2 2 2 2 Because  2k k kn a a n a n               

This completes our proof. 
■ 
 

22.  We need to show that the following is false: 

If  1 2gcd , , , 1km m m   then  

       1 2 1 2k km m m m m m           . 

Let 1 2 38, 9  and  10m m m    then using the given gcd of three integers 

we have  

      gcd 8, 9, 10 gcd 8, gcd 9, 10 gcd 8, 1 1   . 

Evaluating the Euler phi function of the product 8 9 10   gives 

 8 9 10 192    . 

However 

       8 9 10 8 9 10
4 6 4 96

       
   

 

Thus we have produced an example where 

       8 9 10 192 96 8 9 10          . 

 

23. (i) We need to find a formula for 
 n
n


. 

Let 1 2
1 2

rk k k
rn p p p   be the prime decomposition of n. By formula (5.9): 

 
1 2

1 1 11 1 1
r

n n
p p p


                             

  

Applying this gives 
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  n
n

n


 1 2

1 1 11 1 1
rp p p

n

                            


    
1 2

1 2
1 2

1 2 1 2

1 1 11 1 1

1 1 1 1 1 1 1

r

r
r

r r

p p p
p p p

p p p
p p p p p p

                             
                                



 


 

(ii) We need to prove that if  n n  then   3n
n

 . 

Proof. 

Which integers satisfy  n n ? 

Using the result of part (i) with  
n
n




  where   is an integer gives 

      
    

1 2
1 2

1 2 1 2

1
1 1 1

1 1 1

r
r

r r

n p p p
n p p p

p p p p p p






 
  

   



 

 

Note that for primes 5p   the expression 1p   is not prime. Why not? 

Because for 5p   we have 1p   is even and the only even prime is 2. 

This implies that     1 2
1 2

1
1 1 1r

r

p p p
p p p  




 is an integer only if it 

contains the primes 1 2p   and 2 3p  . Evaluating this integer  

    
12 3 3

2 1 3 1
n
n

  
 

. 

 This is our required result. 
■ 

 

24. We need to prove that          2
ma mb m a b          where m, a and b are 

pairwise prime. 

Proof. 
We are given that m, a  and b are pairwise prime. What does this mean? 

     gcd , gcd , gcd , 1m a m b a b   . 

By the multiplicative property of the Euler phi function we have 
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           
     2

ma mb m a m b

m a b

     

  


    

 

This completes our proof. 
■ 

 
25. (a) The divisors of 10n   are 1, 2, 5 and 10d  . Thus, the sum 

         1 2 5 10

1 1 4 4 10
d n

d       

    


 

(b) The factors of 15 are 1, 3, 5  and 15d  . Finding the sum  
d n

d  for 

15n   gives 

         1 3 5 15

1 2 4 8 15
d n

d       

    


 

(c) In a similar manner we have the divisors of 24n   are  
, 6, 8, 12 and 241, 2, 3, 4d  . 

We need to find   of each of these. The first three are simple enough and the 
remaining are given by 

 4 2  ,  6 2  ,    3 3 28 2 2 2 4     ,   1 112 12 1 1 4
2 3


               

. 

The Euler totient function 24 is   1 124 24 1 1 8
2 3


               

. 

Substituting each of these into the evaluation of  
d n

d  gives 

                 6 8 12 241 2 3 4 +

1 1 2 2 2 4 4 8 24
d n

d             

        


 

Note that in each case we have  
d n

d n  . 

 
 


