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Complete Solutions to Exercises 6.1

1. In each case we are given modulo a prime so we use Corollary (6.5):
Let the integer a modulo n have order k, then k ‘ ¢(n)

Remember this result means we have to find the divisors of ¢ (n)

(a) We need to find the order of 2 modulo 7. First, we determine (b(?). What s

(b(?) equal to?

Since 7 is prime so using gb(p) = p—1 we have gb(?) =7—1=6. The order kis

a divisor of 6 which are 1, 2, 3 and 6. Let us evaluate 2 to each of these indices:
2" =2 (mod 7), 2? =4 (mod 7), 2’ =8=1 (mod 7)

We don’t need to find 2° = ? (mod 7) because the order is the smallest index z

such that 2" =1 (mod 7). Hence order of 2 modulo 7 is 3.
(b) Similarly we first evaluate ¢(1 1):
$(11)=11-1=10.
The divisors of 10 are 1, 2, 5 and 10. Working out these indices with base 2:
9 =9 (mod 11), 9?2 = 4 (mod 11), 9 =32=10 (mod 11) and 2" =1 (mod 11)
The order of 2 modulo 11 is 10.
(c) We are required to find the order of 2 modulo 17. First, we evaluate ¢(17),
$(17)=16.
The divisors of 16 are 1, 2, 4, 8 and 16. Evaluating 2 to each of these indices

modulo 17 gives
9 =9 (mod 17), 92 = 4 (mod 17), 2 =16 (mod 17), 9 = 256 = 1 (mod 17)

Hence the order of 2 modulo 17 is 8.
(d) We need to find the order of 2 modulo 23. Since 23 is prime so

6(23)=22.
The divisors of 22 are 1, 2, 11 and 22. We have
9 =9 (mod 23), 9?2 = 4 (mod 23), 91 = 2048 = 1 (mod 23).

The first index to give 1 modulo 23 is 11 so the order of 2 modulo 23 is 11.

2. We use the above Corollary (6.5) to find the order of a modulo n.

Let the integer a modulo n have order k. Then k ‘ ¢(n)
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(a) We need to evaluate the order of 3 modulo 10. Since 3 and 10 are relatively
prime so the order of 3(mod 10) exits. As in question 1 we have to find (b(lO) )
We have gb(lO) = 4 and the only divisors of 4 are 1, 2 and 4. Therefore working
out 3 to each of these indices modulo 10 we have
3 =3 (mod 10), 3$2=9 (mod 10), 3 =1 (mod 10).
Remember we don’t need to work out 3* =1 (mod 10) because by Euler’s
Theorem
a¢(n) =1 (mod n) .
We know that 36(10) =3'=1 (mod 10). The order of 3 modulo 10 is 4.
(b) We need to find the order of 7 modulo 12. Repeating the above argument,
(12)=4.
The only divisors of 4 are 1, 2 and 4:
=7 (mod 12), ?=49=1 (mod 12).
Therefore, the order of 7 modulo 12 is 2.
(c) We are required to find the order of 9 modulo 16. First we find ¢(16). How?

Write the prime factorization of 16:

16 =2'
Using Proposition (5.4) of the last chapter:

o(p)=p" —p""
We have
6(16) = ¢(24) —2' 92 =8.
The only divisors of 8 are 1, 2, 4 and 8. Evaluating these indices with base 9:
9 =9 (mod 16), 9?2 =81=1 (mod 16)
The order of 9 modulo 16 is 2 because this is the first index to give 1 modulo 16.

(d) How do we find the order of 11 modulo 257

Very similar to the previous method. First, we determine ¢(25). How?
We have gb(52) =5 —5=20. The divisors of 20 are 1, 2, 4, 5, 10 and 20:
11' = 11 (mod 25), 11* =121 =21 = —4 (mod 25), 11' = (112) = (~4) =16 (mod 25),
117 = (1) x11 = 16 x 11 = 176 = 1 {mod 25)

Therefore the order of 11 modulo 25 is 5.
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(e) Since 3 and 13 are relatively prime so the order of 3 (mod 13) exists.
Again 13 is prime, so gzﬁ(l?)) =12. We only need to check the indices which are
divisors of 12 and these are 1, 2, 3, 4, 6 and 12.
3 =3 (mod 13), 32=9 (mod 13) and 3* =27=1 (mod 13).
The order of 3 modulo 13 is 3. We don’t need to test the remaining indices 4, 6

and 12 because we are only interested in the first index to give 1 modulo 13.

3. We are given that the order of 5 modulo 13 is 4 so we have
5'=1 (mod 13) (*)
How do we evaluate x in the following 5" = z (mod 13) 7
We write the index 101 as a multiple of 4 plus any remainder;
101 = (25x 4) +1.

Using the rules of indices we have

5 =5 = (5') " x5 =5 (mod 13).
Rpag

Hence z =5 (mod 13) .

4. First we are asked to find the order of 3 modulo 100. How?
We need to work out d)(lOO) which we found in the last chapter:
6(100) = 40.
What are the divisors of 407
1,2,4,5,8, 10, 20 and 40. Now we have to find 3 to each of these indices and
see which one gives 1 modulo 100:
3'=3,3 =9, 3'=81, 3’ =243=43, 3° =6561 =61, 3" =59049 = 49,
3 = (3) = (49) = 2401 =1 (mod 100)
The order of 3 modulo 100 is 20. This means we have
3 =1 (mod 100) 1)
We also need to find the least positive residue of 3" (mod 100). How?

By using (1). We need to express the index 1001 as a multiple of 20 plus any
remainder;

1001 = (50 x 20) + 1.
Using this and (}) we have
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31001 — g0}t (320)50 x3= (1)" x3=3 (mod 100)
——
by (1)

The last two digits of 3'""" are 03.

5. We need to find the order of 7 modulo 60. First we have to find (b(60). How?
Find the prime decomposition of 60:
60 =4x15=2"x3x5.
Using Proposition (5.9):
1

1——
P,

oL

b,

oL

b,

¢(n) =n

With n =60, p, =2, p, =3, p, =5 we have

¢(60) = 60[1—%][1—%][1—%] =16.

Next we find the divisors of 16 which are 1, 2, 4, 8 and 16. Evaluating 7 to each
of these indices 1, 2, 4, 8 and 16 gives

=7, =49, 7 5240151(mod60)
Therefore the order of 7 modulo 60 is 4 which we will use;
7' =1(mod 60) (*)
We also need to find the inverse of 7 modulo 60. How?
We use (*):
7' = 7x 7" (mod 60)
The inverse of 7 modulo 60 is 7° modulo 60. We want to write this as the least

non-negative residue modulo 60:
7" = 343 = 43 (mod 60)
The inverse of 7 is 43 modulo 60.
We are also asked to solve 7z = 59 (mod 60) . Since the inverse of 7 is

43 (mod 60) so we multiply this equation 7z = 59 (mod 60) by 43:

43% T =43x59 = 43x(~1) = —43 =17 (modﬁo).

Hence the solution of 7z = 59 (mod 60) is x =17 (mod 60).



Complete Solutions 6.1 Page 5 of 12

6. First we are asked to find the order of 5 modulo 21. The simplest way to find
this is to determine ¢<21) and then examine the divisors of ¢<21).

The prime factorization of 21 =7 x 3. Using Proposition (5.9):

oL

b,

oL

b,

oL

b,

¢(n) =n

with n =21, p =7, p, =3 we have

¢(21) :21[1—%][1—%] =12.

The only divisors of 12 are 1, 2, 3, 4, 6 and 12. Working out 5 to some of these
indices modulo 21 gives
=5, #=2=4, 5 =(3) =£=16, 5 =(5) =4 = 64=1(mod 21).
Hence the order of 5 modulo 21 is 6 which means that
5° =1 (mod 21] (1)
We are also asked to solve 5z = 16 (mod 21). By using (f1) we can find the
inverse of 5 modulo 21 because
5" =5(5") = 1 (mod 21)
The inverse of 5 modulo 21 is 5° modulo 21. Therefore

5'=5=5'x5 = 16x5=80=17 (mod 21).

From above calculation

Hence 5 ' =17 (mod 21) . Multiplying both sides of the given equation
5z = 16 (mod 21) by 17 gives

17 %52 =17x16 = (—4)x (~5) = 20 (mod 21}

=1

Therefore, our solution is z = 20 (mod 21) .

7. (a) We are asked to find the least non-negative residue z such that

3 =g (mod 17).
To simplify our evaluation of this we first find the order of 3 modulo 17. Note
that 17 is prime so gb(l?) =16 and the divisors of 16 are 1, 2, 4, 8 and 16. We

have

3=3,9=9, 3 =81=13=—4, 3 =(3') =(~4) =-1(mod17) ()
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As none of these are congruent to 1 modulo 17 so the order of 3 modulo 17 must

be gb(l?) =16. We have
3" =1 (mod 17) (*)
Writing the given index 1000 as a multiple of 16 and any remainder:
1000 = (62 x16)+ 8
Using this result to evaluate 3" =z (mod 17) gives

1000 _ 3(62x16)+8 _ (316)62 35— (1) 62 (38 = 38

-
by (*)

16 (mod 17)

=
by (1)
We have 3" =16 (mod 17).

(b) This time we have to find 3" =« (mod 98) . First we find the order of 3

modulo 98. The prime decomposition of 98 is given by

98 =2 x 7%,
Using Proposition (5.9):
¢<n):n TP | PR I P
b, p, D,

With n =98, p =2, p, =7 we have

¢(98) = 98[1—%][1—%] = 42.

What are the divisors of 427
1,2, 3, 6, 7 and 42. Evaluating

3'=3, 32=9, 33=27, 3 =277 =729=143, 3 5(32)335(9)3352187531 (mod98)
Therefore, the order of 3 modulo is ¢<98> =42:

3 =1 (mod 98) (*)
Using this to evaluate 3" =z (mod 98) . We need to write the index 970 as a

multiple of 42 and any remainder:

970:(23><42 1 4.

~—

We have

3970 = glBa2)H (3 )23 x3' = 1x3' =81 (mod 98).

{lll

by

=
—

*)
Therefore 3" = 81 (mod 98) .
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8. From the introduction we know we have to find the least positive residue z

such that
3" = z(mod 1000).

Recall we had gz5<1000> = 400 and the prime decomposition of 400 = 2* x 5*. The
divisors of 400 are 1, 2, 4, 5, 8, 10, 16, 20, 25, 40, 50, 80, 100, 200, ---. We only
need to test these indices of 3:

3'=3,3 =9,3" =813 =243,3" =561, 3" = 49,---, 3 = 1(mod 1000}
Hence the order S(mod 1000) is 100. Writing the index of 311 as multiple of 100
and any remainder gives 311 = (3 X 100) + 11. Therefore

(3x100)+11

3P =3 = (3100)3 %31 =1x31 =3"x3=49x3= 147(mod 1000) .

The last three digits of 3°'' is 147.

9. We need to show that the inverse of a modulo nis "' (mod n) given it has

order k.
Proof.

Since we are given that a modulo n has order k so
at =1 (mod n) (*)
The inverse of @ modulo n is z such that
ar =1 (mod n)
Since k is a positive integer so by (*) we have a" = a(ak%) =1 (mod n)
Therefore

al=z=d"" (mod n)

We have ¢ ' =o' (mod n) . This completes our proof.

10. We are required to prove that if ¢ modulo n has order mk then o™ has
order k.

Proof.

We are given that a modulo n has order mk therefore

a™ =1 (mod n)

Using the rules of indices we have
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o™ = (af”)k =1 (mod n)

k
We also need to show k is the smallest index such that (a’”) =1 (mod n) . How?

By contradiction.

b
Suppose (a’”) =1 (mod n) where 0 <b < k. Then

(a’”)b =" =1 (mod n) .

Since b <k and m > 0 so mb < mk which implies that the order of a modulo n
cannot be mk because we have a smaller index mb which gives 1 modulo n. This
is impossible. Hence our supposition b < k£ must be wrong so the order of a™ is k

as required.

11. Note that
aEOorl(mon).

We cannot have a =0 (mod 2) because the order is defined when a is relatively

prime to 2. We can only have a =1 (mod 2) so the order can only be 1.

12. We need to prove that if the order of a modulo p is k then & ‘ (p — 1).

Proof.
We are given that p is prime. By Corollary (6.5):

Let the integer a modulo n have order k. Then k ‘ gb(n)

We have k ‘ gb(p) where k is the order of a modulo p. By Proposition (5.2):
If p is prime then ¢(p) =p—1.
Substituting gb(p) = p—1 into k:‘ qb(p) gives
k ‘ ( p— 1).
This is our required result.

[ ]
13. We are required to prove that if a as order 2k modulo prime p where p is an

odd prime then o' = —1 (mod p) .
Proof.

We are given that a as order 2k modulo prime p therefore
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aF =1 (mod p) .

Using the rules of indices we have

o’ (ak)2 =1 (mod p).
By Lemma (4.3):
=1 (modp) & =41 (modp)

Applying this Lemma on (ak >2 =1 (mod p) gives
" =41 (modp).
However a* # 1 (mod p). Why not?

Because a as order 2k which means that 2k is the smallest index of a which is

congruent to 1 modulo p. Hence o = —1 (mod p).
[
14. We need to show that the order of a modulo p™ divides p™ — p""
Proof.
We are given that p is an odd prime. Let k£ be the order of @ modulo p™.
By Corollary (6.5):
Let the integer a modulo n have order k. Then k ‘ ¢(n>
We have k ‘ ¢(pm). Using Proposition (5.4) to find gb(p’”):
¢(pm) — pm o pmfl
Therefore qs(pﬂl) — p’UL _ p’!ﬂ*l and k ‘ (pm _ pﬁl*l) .
[

15. We are given that km is the order of @ modulo n. We need to prove that
Proof.
The order of a always divides ¢(n> because of Corollary (6.5):

Let the integer a modulo n have order k, then k ‘ qb(n)

Hence km ‘ ¢(n> which implies that & ‘ ¢(n> . This completes our proof.
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16. We are required to prove that if ¢ modulo n has order %k then so does the
inverse of a modulo n.

Proof.

Since the order of a(mod n) exists so the integers a and n are relatively prime

which implies that o' (mod n) exists.

Let b modulo n be the inverse of @ modulo n. This implies that
ab =1 (mod n) .

We are given that a modulo n has order k therefore
a" =1 (mod n)

Consider (ab)k =1"=1 (mod n) Using the rules of indices we have

(axb)k =a" xb =1xdp" =" El(mod n)
We have b' =1 (mod n) but we need to show that k is the order of b modulo n.
Suppose h is the order of b modulo n where h < k. This gives
b =1 (mod n) (*)
h
Since axb=1 (mod n) SO (a X b) =1 (mod n) and

(axb)hzahxbh ahxlzahzl(modn).

o
This implies that A is the order of a modulo n. In our supposition we have h < k
which is impossible because k is the order of a modulo n. Therefore, k is the order
of b modulo n. Remember b is the inverse of @ modulo n. This completes our

proof.

17. We have to prove that
27 2t gt 97 1= 0 (mod )
Given that 2 modulo prime p has order rs.

Proof.

We are given that 2 modulo prime p has order rs therefore
2" =1 (mod p) implies 2” —1=0 (mod p).
By using the given hint we have

2 —1=(2 - 1)(2*“) D BT L ST U 1) = 0 (mod p)
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By Proposition (3.14) (a) of chapter 3:
If axb=0 (mod p) where p is prime then a =0 (mod p) or b=0 (mod p).
We have
2"—1=0 (mod p) or 27 + ol + o'l +-+2"4+1=0 (mod p) :
We are also given that s >0 so 2" #1 (mod p) or in other words
2" —-1#0 (mod p). Therefore
AN L D U R S = (mod p).

This is our required result.

18. The proof of this result is similar in nature to the proof of the previous

question. We need to prove that if a has order £ modulo prime p then
a7 +ad P +ad P+ +1=0 (mod p).
Proof.

We are given that a has order k¥ modulo prime p therefore

a" =1 (mod p) implies that " —1=0 (mod p).
Factorizing a" —1 gives

at —1= (a—l)(a’H +a7 +ad" P+ ta +1>.
Using this we have
o —1= (a —1)((/H +ad7 a4+ +a +1> =0 (mod p).
By Proposition (3.14) of chapter 3:
If axb=0 (mod p) where p is prime then a =0 (mod p) or b=0 (mod p).
We have
a—1=0 (mod p) or ¢ '+ +ad"P+4a+1=0 (mod p).
We are given that a # 1 (mod p) so we have
T +d P+ P+ +1=0 (mod p).

This completes our proof.
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19. We need to prove that (a + 1)4 = —4(mod p) given that a modulo p has

order 4.
Proof.

Since the order of a modulo p is 4 so
o' =1 (mod p).
Using the binomial theorem to expand (a + 1)4 gives
(a + 1)4 =a' +4a’ +6a’ +4a +1 (mod p) (*)
Using the result of question 13:
If @ as order 2k modulo prime p where p is odd then o = —1 (mod p).
Since the order of a modulo p is 4 so
o’ =—1 (mod p).
Multiplying this by a gives
o’ =—a (mod p).
Putting all these results a' =1 (mod p), o’ =—a (mod p) and o* = —1 (mod p)
into (*) yields

<a+1)4 =a' +4a® +6a* +4a+1
=1+4(-a)+6(-1)+4a+1
=1—4a—-—6+4a+1
5—4(modp)

Hence, we have <a + 1)4 =—4 (mod p).



