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Complete Solutions to Exercises 6.4 
 

1. In order to find the primitive roots of the given prime we use Proposition 
(6.18): 

Let r be a primitive root of modulo p where p is prime. Then  modmr p  is also 

a primitive root of modulo p provided  gcd , 1 1m p   . 

(a) First we need to find a primitive root of 7. Recall we only need to try the 
positive factors of  7 6  . Why? 

 Because of Corollary (6.5): 

Let the integer a modulo n have order k. Then  k n .  

 The only positive factors of 6 are 1, 2, 3 and 6.  
We could try 2: 

 1 2 3, 22 2 4, 2 8 1 mod 7    . 

 Since  32 1 mod 7  which implies that the order of 2 modulo 7 is 3 and not 6 

so it cannot be a primitive root of modulo 7. 
Next we try 3: 

 1 2 3, 33 3 2, 3 27 1 mod 7     . 

As none of these indices give 1 modulo 7 so the order must be 6 which means 
that 3 is a primitive root of modulo 7. 
We need to find the integers which are relatively prime to  7 6  . The only 

integers below 6 which are relatively prime to 6 are 1 and 5. Therefore 

 1 5, 33 3 5 mod 7  . 

Hence 3 and 5 are the only incongruent primitive roots of modulo 7. 
(b) We are asked to find the primitive roots of modulo 11.  
First we find the Euler phi function of 11;  11 10  . The only positive factors 

of 10 are 1, 2, 5 and 10. 
Let us see if 2 is a primitive root of modulo 11: 

 1 2 52 2, 2 4, 2 10 mod11   . 

Since none of these indices (1, 2 and 5) gives 1 modulo 11 so the order of 2 
modulo 11 must be 10. Therefore 2 is a primitive root of modulo 11. 
How do we find the other primitive roots of modulo 11? 
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Use the above Proposition (6.18). In order to use this proposition we need to 
find which integers are relatively prime to  11 10  . These are 

1, 3, 7 and 9. 
Taking 2 to these indices gives 

 1 3 7 92 2, 2 8, 2 7 and 2 6 mod 11    . 

The incongruent primitive roots of modulo 11 are 2, 6, 7 and 8. 
(c) We need to find the incongruent primitive roots of 17. 
We attack this problem in a similar manner to the previous two.  
Evaluating the Euler totient function of 17 gives 

 17 16  . 

The positive factors of 16 are 1, 2, 4, 8 and 16.  
Let us first trial the powers of 2 with these indices, 1, 2, 4, 8 and 16: 

 1 2 4 82 2, 2 4, 2 16, 2 1 mod 17     

The order of 2 modulo 17 is 8 not 16 so 2 is not a primitive root of modulo 17. 
Next let us trial powers (1, 2, 4 and 8) of 3: 

 1 2 4 83 3, 3 9, 3 13, 3 16 mod 17    . 

Therefore the order of 3 modulo 17 is 16 which implies that 3 is a primitive root 
of modulo 17.  
We use powers of 3 to find the other primitive roots of 17. We only use the 
powers which are relatively prime to  17 16  . Which positive integers below 

16 are relatively prime to 16? 
1, 3, 5, 7, 9, 11, 13 and 15. 

Evaluating these powers with base 3 gives 

 
1 3 5 7 9 11

13 15

3 3, 3 10, 3 5, 3 11, 3 14, 3 7,
3 12  and  3 6 mod 17

     
 

 

The primitive roots of modulo 17 are 3, 5, 6, 7, 10, 11, 12 and 14. 
(d) This time we are asked to find the primitive roots of 23.  
We have  23 22   and the factors of 22 are 1, 2, 11 and 22. 

First we see if 2 is a primitive root of 23: 

 1 2 112 2, 2 4, 2 1 mod 23   . 

Therefore 2 cannot be a primitive root of modulo 23.  
Now we trial 3: 

 1 2 113 3, 3 9, 3 1 mod 23   . 
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Similarly, 3 cannot be a primitive root of modulo 23. 
Now we trial the next prime, 5: 

 1 2 115 5, 5 2, 5 22 mod 23   . 

The order of 5 modulo 23 must be 22 because none of the other factors produce 
1 modulo 23. Hence 5 is a primitive root of modulo 23. 
We need to find the other primitive roots of modulo 23. These are given by the 
powers of 5 which are relatively prime to  23 22  . The positive integers 

22  which are relatively prime to 22 are 
1, 3, 5, 7, 9, 13, 15, 17, 19 and 21. 

Evaluating these powers with base 5 yields: 

 
1 3 5 7 9 13

15 17 19 21

, 55 5, 5 10, 5 20 17, 5 11, 5 21,
5 19, 5 15, 5 7 and  5 14 mod 23

     
   

 

The primitive roots of 23 are 5, 7, 10, 11, 14, 15, 17, 19, 20 and 21. 
 

2. (a) We need to solve  3 1 mod 7x  . Since 7 is prime so  7 6   and 3 6  so 

we have 3 incongruent solutions. 
From solution to question 1(a) we know 3 is a primitive root of 7. Evaluating 
powers of 3 we have 

 1 2 3 4 5 63 3, 3 2, 3 6, 3 4, 3 5, 3 1 mod 7       

Creating a table gives 

Integer a 1 2 3 4 5 6 

 3ind a  6 2 1 4 5 3 

Applying the rules of indices to  3 1 mod 7x   converts to linear form: 

     3 33 ind ind 1 mod 6x  . 

From the table we have  3ind 1 6 . Substituting this into the above yields 

   33 ind 6 mod 6x  . 

The  gcd 3, 6 3 . Dividing the above congruence by 3 gives 

   3ind 2 mod 2x  . 

Solving this 

   3ind 2, 4 and 6 mod 6x   

Using the above table in the reverse direction we have 
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 2, 4, 1 mod 7x   

Our solution in ascending order is  1, 2, 4 mod 7x  . 

(b) This time we need to solve  4 1 mod 13x  .  

The Euler phi function of 13 is 12 because 13 is prime. Moreover as 4 12  so 

we have 4 incongruent solutions to  4 1 mod 13x  . 

2 is a primitive root of 13 and we created a table for the indices in Example 19: 
a 1 2 3 4 5 6 7 8 9 10 11 12 

 2ind a   12 1 4 2 9 5 11 3 8 10 7 6 

Applying the rules of indices on  4 1 mod 13x   gives 

     
     

2 2

2

4 ind ind 1 mod 12

4 ind 12 mod 12 *

x

x




 

Evaluating the gcd of 4 and 12 we have  gcd 4, 12 4  and 4 4 . Dividing the 

congruence in (*) by 4 gives 

   2ind 3 mod 3x  . 

Hence we have 

   2ind 3, 6, 9, 12 mod 12x  . 

Locating these values in the bottom row of the above table and reading off the 
corresponding integers in the top row we have 

 8, 12, 5, 1 mod 13x  . 

Placing our solutions into ascending order gives  1, 5, 8, 12 mod 13x  . 

(c) Similarly, we solve  11 1 mod 23x  . We have  11 23  because 

 23 22  . Therefore there are exactly 11 incongruent solutions to   

 11 1 mod 23x  . 

In question 1(d) we established that 5 was a primitive root of modulo 23.  
By evaluating powers of 5 we get the following table: 

a 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

 5ind a  22 2 16 4 1 18 19 6 10 3 9 20 14 21 17 8 

 

a 17 18 19 20 21 22 

 5ind a  7 12 15 5 13 11 
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Using the rules of indices on  11 1 mod 23x   yields 

     
   

5 5

5

11 ind ind 1 mod 22

11 ind 22 mod 22

x

x




 

The  gcd 11, 22 11  and 11 22  so dividing the above congruence by 11: 

   5ind 2 mod 2x  . 

From this    5ind 2 mod 2x   we have 

   5ind 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22 mod 22x  . 

Again, locating these integers in the bottom row of the above table and reading 
off the corresponding entries in the first row we have 

 2, 4, 8, 16, 9, 18, 13, 3, 6, 12, 1 mod 23x  . 

Writing this in ascending order gives 

 1, 2, 3, 4, 6, 8, 9, 12, 13, 16 and 18 mod 23x  . 

 

3. We need to solve  1 0 mod 19dx    for each d which is a factor of  19 . 

 19 18 Because  19 is prime       

The positive factors d of 18 are 1, 2, 3, 6, 9 and 18. 
By evaluating powers of 2 we obtain the following table: 

a 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 
 2ind a   18 1 13 2 16 14 6 3 8 17 12 15 5 7 11 4 10 9 

 Hence 2 is a primitive root of 19. 
For 1d  : 

In this case we have a unique solution  1 mod 19x  . 

For 2d  : 
In this case we have two incongruent solutions. Substituting 2d   into the 
given congruence yields 

 2 1 mod 19x  . 

Applying Lemma (4.3): 

   2 1 mod 1 modx p x p          

To  2 1 mod 19x   gives 

 1 1, 18 mod 19x     
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Our two incongruent solutions to  2 1 mod 19x   are  1, 18 mod 19x  . 

For 3d  : 
In this case we have three incongruent solutions. Substituting 3d   into the 
given congruence yields 

 3 1 mod 19x  . 

Applying the rules of indices we have 

     
   

2 2

2

3 ind ind 1 mod 18

3 ind 18 mod 18

x

x




 

Dividing the last congruence by 3 gives 

   2ind 6 mod 6x   

Hence  

   2ind 6, 12, 18 mod 18x   

Using the above table we have 

 7, 11, 1 mod 19x   

Our three incongruent solutions to  3 1 mod 19x   are  1, 7, 11 mod 19x  . 

For 6 and 9d d  : 

Carbon copying the above arguments we have the following results: 

 6 1 mod 19x    implies  1, 7, 8, 11, 12, 18 mod 19x   

 9 1 mod 19x   implies  1, 4, 5, 6, 7, 9, 11, 16, 17 mod 19x   

For 18d   we have the 18 least positive residues of modulo 19: 

 18 1 mod 19x   implies  

 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18 mod 19x   

When  18 19d    so we have the converse of FLT; that is all the solutions 

x  mod 19  such that 19 x . 

 
4. We are required to prove that if d is even then 1p  is a solution to 

 1 0 moddx p   where p is prime. 

Proof. 
We are given that d is even, so let 2d m  where m is an integer. Note that 
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 1 1 modp p   . 

Therefore using this we have  

   22 1 1 mod
md mx x p     

Hence the integer 1p  satisfies  1 0 moddx p   so it is a solution. 

This completes our proof. 
■ 

 

5. (a) We are asked to find  2 3 4 51 2 2 2 2 2 mod 7x       . The powers of 2 

modulo 7 are given by 

 1 2 3 4 52 2, 2 4, 2 1, 2 2, 2 4 mod 7     . 

Therefore 

 1 2 4 1 2 4 0 mod 7x        . 

(b) We need to find  2 3 4 51 3 3 3 3 3 mod 7x       . 

We have evaluated the powers of 3 in question 2(a): 

 1 2 3 4 5 63 3, 3 2, 3 6, 3 4, 3 5, 3 1 mod 7      . 

Substituting these into the above gives 

 
2 3 4 51 3 3 3 3 3

1 3 2 6 4 5 21 0 mod 7
x      

       
 

(c) We need to find  2 3 4 5 6 7 8 91 3 3 3 3 3 3 3 3 3 mod 11x           . 

The powers of 3 modulo 11 are 

 1 2 3 4 5 6 7 8 93 3, 3 9, 3 5, 3 4, 3 1, 3 3, 3 9, 3 5, 3 4 mod 11         . 

Substituting these into the given congruence yields 

 

2 3 4 5 6 7 8 91 3 3 3 3 3 3 3 3 3
1 3 9 5 4 1 3 9 5 4
0 mod 11

x          
         


 

(d) This time we need to find the least non-negative residue x in  

 2 3 4 5 6 7 8 9 10 111 2 2 2 2 2 2 2 2 2 2 2 mod 13x             . 

We evaluated the powers of 2 modulo 13 in Example 19: 

 
1 2 3 4 5 6

7 8 9 10 11 12

2 2 , 2 4 , 2 8, 2 3, 2 6, 2 12,
2 11, 2 9, 2 5, 2 10, 2 7, 2 1 mod 13

     
     

 

 Substituting these into the above congruence gives 
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 

 

2 3 4 5 6 7 8 9 10 111 2 2 2 2 2 2 2 2 2 2 2 mod 13
1 2 4 8 3 6 12 11 9 5 10 7
78 0 mod 13

x            
           
 

 

 In all our answers we have zero modulo prime. 
 

6. We are required to prove if p r  and r   1 mod p  then 

 2 3 21 0 modp pr r r r p        

where p is an odd prime. 
Proof. 

We are given that p r  so by Fermat’s Little Theorem (FlT) we have 

   1 11 mod 1 0 modp pr p r p     . 

We can factorize 1 1pr    as 

  1 2 31 1 1p p pr r r r r         . 

Substituting this into  1 1 0 modpr p    gives 

    1 2 31 1 1 0 modp p pr r r r r p            (�) 

By Proposition (3.14) (a): 

If  0 moda b p   where p is prime then  0 moda p  or  0 modb p . 

Applying this proposition to (�) gives 

   2 31 0 mod or 1 0 modp pr p r r r p        . 

We are given that r   1 mod p . Therefore we must have 

 2 3 1 0 modp pr r r p      . 

This completes our proof. 
■ 

 The second part requires us to evaluate  

 2 3 21 modp pr r r r x p        provided  1 modr p  

 If  1 modr p  then  1 modmr p  so 

 

2 3 2

2

1 1 1 1 1

1 2
1 mod

p p

p

r r r r

p
p p

 

 

         

  
 

 

 

■ 
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7. We are asked to prove Proposition (6.18) which is given by: 

Let r be a primitive root of modulo p where p is prime. Then  modmr p  is also 

a primitive root of modulo p provided  gcd , 1 1m p   . 

Proof. 
We are given that r is a primitive root of modulo p so the order of r modulo p 
is   1p p   . 

Since we are given that  gcd , 1 1m p    so by Corollary (6.9): 

Let a modulo n have order k, then sa  has order k   gcd , 1s k  . 

We have the order of mr  is also   1p p   . Hence mr  is a primitive root of 

modulo p. This completes our proof. 
■ 

 
8. We need to show that 1 2r r  is not necessarily a primitive root modulo p. 

Only need to produce a counter example. 

From Example 24 we have 2, 3, 10, 13, 14 and 15 are primitive roots modulo 
19.  
Let 1 2r   and 2 3r   then 1 2 2 3 6r r     but 6 is not a primitive root 

modulo 19. 
 

9. We are asked to find the order of negative residues modulo 19.  
The Euler phi function of 19 is  19 18  . 

(a) We need to find the order of  2 mod 19 . 

We are given that 2 is a primitive root modulo 19. Therefore 

 182 1 mod 19 . 

Rewriting the index 18 we have 

   292 1 mod 19 . 

By Lemma (4.3): 

   2 1 mod 1 modx p x p          

Applying this result to    292 1 mod 19  gives  

 92 1 mod 19  or  92 1 mod 19  . 
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We cannot have  92 1 mod 19 . Why not? 

Because 2 is a primitive root of 19. Hence we have  

 92 1 mod 19   

Multiplying both sides of this by 1  yields 

     991 2 2 1 mod 19     

Hence the order of  2 mod 19  is 9. 

(b) We evaluate the order of  3 mod 19  along similar lines of part (a). 

Since 3 is a primitive root of 19 so  

 183 1 mod 19 . 

We have  

   293 1 mod 19 . 

Again, using Lemma (4.3) given above: 

   9 93 1 mod 19 or  3 1 mod 19   . 

Clearly, we cannot have  93 1 mod 19  because 3 is a primitive root modulo 

19. Therefore, we must have  93 1 mod 19  . Multiplying this by 1  gives 

       9
3 1 1 1 mod 19      . 

The order of  3 mod 19  is 9. 

(c), (d), (e) and (f). The order is evaluated similar to parts (a) and (b) and the 
order in each case is 9. 
 

10. We are asked to prove r  has order 1
2

p   given that r is a primitive root and 

prime  3 mod 4p  . 

Proof. 
Since r is a primitive root of p so  

 1 1 modpr p  . 

We have  

 
21

2 1 mod 19
p

r
     

. 

Applying Lemma (4.3) to this congruence: 
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   2 1 mod 1 modx p x p          

 gives 

   
1 1

2 21 mod or  1 mod
p p

r p r p
 

  . 

Clearly we cannot have  
1

2 1 mod
p

r p


  because r is a primitive root modulo 

p. Therefore we must have  
1

2 1 mod
p

r p


 . Multiplying this by 1  gives 

     
1

21 1 1 1 mod
p

r p


       (�) 

We are given that  3 mod 4p   so  

13 4 1 2 4 1 2
2

pp k p k k         . 

Hence the index 1 1 2
2

p k    in (�) is odd so we can write  
1

21 1
p

   . 

Rewriting the congruence in (�) as 

       
1 11 1

2 22 21 1 1 mod
p pp p

r r r p
  

      . 

We have    
1

2 1 mod
p

r p


   and need to show this index 1
2

p   is the order of 

r .  

Suppose the order of r  is m where 1
2

pm  . We have 

   1 mod
m

r p    (*) 

By Proposition (6.4): 

Let a modulo n have order k. Then  1 modha n k h  . 

Applying this proposition to    
1

2 1 mod
p

r p


   gives 1
2

pm  . 

Squaring the index in (*) yields 

   2 21 1 mod
m

r p   . 

Rewriting 1r r    into the above congruence gives 

       2 2 2 2 21 1 1 mod
m m m m mr r r r p        . 

In the above we have 1
2

pm   which implies 2 1m p  . We have a 

contradiction because the order of r is 1p  but in the above we have  
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 2 1 modmr p  where 2 1m p  . 

Our supposition that the order of r  is m where 1
2

pm   must be wrong. 

Hence the order of r  is 1
2

p  . This completes our proof. 

■ 
 

11. You need to notice that in each case we have a primitive root. Observe that 

 3 14 mod 17  ,  5 12 mod 17  ,  6 11 mod 17  ,  

 7 10 mod 17  ,  10 7 mod 17  ,  11 6 mod 17  ,  

 12 5 mod 17   and  14 3 mod 17  . 

We are given that 3, 5, 6, 7, 10, 11, 12 and 14 are primitive roots modulo 19 
therefore 3,  5,  6,  7,  10,  11,  12 and  14         are also the same 

primitive roots modulo 17 but in a different order.  
The order of 3,  5,  6,  7,  10,  11,  12 and  14         modulo 17 is  

 17 16  . 

 

12. We need to prove that that r  is also a primitive root modulo p given that r is 

a primitive root modulo p where  1 mod 4p  . 

Proof. 

We use proof by contradiction.  

Suppose r  is not a primitive root modulo p but r is. Then 

   1 mod
m

r p      (*) 

where  1m p   but 1m p  . 

We consider two cases of m.  

Case I m is even 

If m is even, 2m k ,  then substituting this into (*) yields 

     
   

2 2

2 2 2

1

1 1 mod

m k k

k k k

r r r

r r p

     

    
 

This is impossible because r is a primitive root modulo p so it has order 1p  

not 2 1m k p   . Therefore m cannot be even. 



                                                             Complete Solutions 6.4     Page 13 of 23 

Case II m is odd 

Let m be odd. We are given that  1 mod 4p   so for some integer n we have 

1 4p n  .  

Combining these two results,  1m p   and 1 4p n  , we have 

4m n . 

In this case we are considering m to be odd, therefore  gcd , 4 1m   and so by 

Euclid’s Lemma (1.13): 

If a bc  with  gcd , 1a b    then a c . 

We have m n . Since m and n are positive integers so m n .  

Additionally we have 2 4m n  where 2 4m n  because 2 4 .  

Squaring the congruence in (*) gives 

   2 21 1 mod
m

r p   . 

Rewriting this index r  in this congruence 

       2 2 2 2 21 1 1 mod
m m m m mr r r r p          

This is also impossible because 2 4m n  and 4n  is the order of r modulo p. 

Hence we cannot have an odd m.  

Since m cannot be even or odd so such a m does not exist. Therefore the order 

of r  is 1p  which means that r  is a primitive root modulo p. 

This completes our proof. 
■ 

 

13. We are asked to find  2 3 10 13 14 15 mod 19x       : 

 2 3 10 13 14 15 163800 1 mod 19x         . 

 

14. We are asked to prove that the multiplicative inverse of  modr p  is also a 

primitive root of modulo p. 

Proof. 



                                                             Complete Solutions 6.4     Page 14 of 23 

We are given that r is a primitive root of modulo p therefore the  gcd , 1r p   

which implies that the inverse of  modr p  exists. 

Let  modt p  be the inverse of  modr p . Then  

 1 modrt p   (*) 

Suppose the order of  modt p  is n where 1n p  . From this we have 

 1 modnt p .   

Taking the congruence in (*) to the index n: 

   1 1 mod
n n n nrt r t p   . 

Substituting the previous congruence  1 modnt p  into this last congruence 

gives 

 1 1 modn n n nr t r r p     .    

This  1 modnr p  is impossible because we are given that r is a primitive 

root of p so the order of r is 1p  but in the above we have  1 modnr p  

where 1n p  . 

Therefore our supposition the order of  modt p  is n where 1n p   is wrong 

and the order of  modt p  is 1p  which means that t is a primitive root of 

modulo p. This completes our proof. 
■ 

 
15. We are required to prove that the product of all the incongruent primitive roots 

of a prime p are congruent to  1 mod p . How do we prove this result? 

By using the statement of the previous question. 
Proof. 
If the prime, 2p   then the only primitive root of 2 is 1 and  

 1 1 mod p . 

We have our given result. 
Now let p be an odd prime. By the Primitive Root Theorem (6.22): 

Every prime p has a primitive root and there are  1p   primitive roots of p. 

There are  1p   primitive roots of p. By Proposition (5.10): 

For 2n  ,  n  is an even integer. 
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Therefore p has an even number of primitive roots. Let these be 

1 2 2, , , , ,n nr r r r  . 

where the multiplicative inverse of  modjr p  is  2 modjr p  in this list because 

by the previous question the inverse of  modjr p  is also a primitive root. For 

each j  from 1 to n we have 

 2 1 modj jr r p  . 

Therefore the product  

 1 2 2 1 modn nr r r r p       . 

Thus we have our required result. 
■ 
 

16. (i) First the Fermat prime 
32

3 2 1 257F     and we are told it is prime. 

Therefore  257 256   and the positive divisors of 256 are  

{1, 2, 4, 8, 16, 32, 64, 128, 256} . 

We need to evaluate each of these as an index to the base 3. Clearly the first 

three indices are not going to give 1 modulo 257 and the last index, 256, will 

definitely give 1 modulo 257 because of Euler’s Theorem. Checking the 

remaining indices gives 
83 6561 136    1 mod 257   

 216 8 23 3 136 18 496 249 8        1 mod 257  

   2 232 163 3 8 64      1 mod 257  

   4 464 163 3 8 4096 241 16         1 mod 257   (�) 

   2 2128 643 3 16 256 1        1 mod 257   (�) 

Hence 3 is a primitive root of modulo 3 257F  . 

(ii) We need to solve the quadratic  2 1 mod 257x  . Using indices to the 

base 3 gives 

     3 32 ind ind 1 mod 256x   . 

Using (�) from part (i) we have  3ind 1 128  . Substituting this yields 



                                                             Complete Solutions 6.4     Page 16 of 23 

   32 ind 128 mod 256x    (*) 

The  gcd 2, 256 2  and 2 128  so we have two incongruent solutions of the 

given quadratic. Dividing both sides by 2 of (*) gives 

     3 3ind 64 mod 128 ind 64, 64 128 64, 192x x      

Hence the solutions are given by  

 64 1923 , 3 mod 257x    

The first of these was evaluated (�) in part (i). One solution is  

 643 241 mod 257  

By Proposition (3.14) (b) we have 

 2 2 moda b p     moda b p   

The other solution of  2 1 mod 257x   is given by  241 16 mod 257x   . 

Our solutions to the quadratic are  16, 241 mod 257x  . 

 

17. (i) We need to show that 2 is a primitive root of 243. First note that 5243 3 . 

Therefore we need to show that the order of 2 modulo 243 is equal to  

   5 5 4243 3 3 3 162     . 

The positive divisors of 162 are {1, 2, 3, 6, 9, 18, 27, 54, 81, 162} . Clearly the 

indices 1, 2, 3, 6 of base 2 are not going to work. We try the next index: 
92 512 26    1 mod 243   (�) 

Using this to evaluate the next index 18 gives 

 218 9 22 2 26 676 190      1 mod 243 . 

Again using the result obtained in (�) to find the remaining indices (apart from 

the last one which we know is going to give us 1 modulo 243 because of Euler’s 

Theorem): 

 327 9 32 2 26 17 576 80      1 mod 243  (�) 

 254 27 22 2 80 82     1 mod 243  (*) 
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 381 27 32 2 80 512 000 242      1 mod 243  

Therefore the order of 2 modulo 243 is  243 162   which implies that it is a 

primitive root of modulo 243. 

(ii) We are asked to solve the quadratic  2 82 mod 243x  . Using the rules of 

indices with respect to the base 2 we have 

     2 22 ind ind 82 mod 162x   

From (*) in part (i) we have  2ind 82 54 , substituting this into the above 

   22 ind 54 mod 162x   

We have 2 incongruent solutions because the  gcd 2, 162 2  and 2 54 ; 

        
   

2 2
simplifying

2

2 ind 54 mod 162 ind 27 mod 81

ind 27, 27 81 27, 108 mod 162

x x

x

  

   
 

From the last line    2ind 27, 108 mod 162x   we deduce that 

 27 1082 , 2 mod 243x   

From (�) we have the first value of x that is  272 80 mod 243x   . Since we 

are given a quadratic equation  2 82 mod 243x   so the other solution is  

 80 163 mod 243x   . 

Our solutions to the given quadratic  2 82 mod 243x   are  

 80, 163 mod 243x  . 

 

18. We need to prove that if  1d p   and p x  then 

 1 0 moddx p   where p is prime 

  has exactly d incongruent solutions. 
Proof. 

We are given that  1d p   so there is an integer m such that  

1dm p    
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From the given congruence  1 0 moddx p   we have 

 1 moddx p . 

Taking this  1 moddx p  to the power of m gives 

   1 1 mod
md dm px x x p     (*) 

All the members of the reduced residue system modulo p satisfy the congruence 
(*). This implies that this congruence (*) has exactly 1p  incongruent 
solutions because there are 1p  members which belong to the reduced residue 

system modulo p namely  1, 2, 3, , 1p  . Factorizing this congruence by 

using the well-known identity: 

      1 21 1 1r s r srs ra a a a a         

gives 

        1 21 1 1 0 modd m d mdm dx x x x x p           (�) 

So this congruence has exactly 1p   incongruent solutions. 
By Proposition (3.14) (a): 

 0 moda b p   implies  0 moda p  or  0 modb p  

Applying this to (�) gives 

          1 21 0 mod or   1 0 modd m d mdx p x x x p        . 

By the given result of Lagrange we have that the second bracket on the right 

hand side       1 2 1 0 modd m d mx x x p       has at most  1d m   

incongruent solutions. The total number of incongruent solutions of (�) is 1p  
therefore 

      
 

 1 2

Let  be the least number of solutions 1 solutions

1 1 1 0 modd m d mdm d

s d m

x x x x x p 

 

       
 

. 

We have  

 
 

1 1
1

s d m p dm
s dm d m dm dm d d

    
      

 

The least number of solutions of    1 0 moddx p   is s d . Applying  

Lagrange’s result to    1 0 moddx p   gives that the number of incongruent  

solutions of this congruence must be less than or equal to d.  
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Hence    1 0 moddx p   has exactly d incongruent solutions. 

This completes our proof. 
■ 

 
19. We need to show the converse of Fermat’s Little Theorem: 

If  1 1 modpa p   then p a . 

Proof. 
We are given that p is prime so by Primitive Root Theorem (6.22): 

Every prime p has a primitive root. 

Let r be a primitive root of p. Taking the indices to the base r of  

 1 1 modpa p  . 

gives     1ind ind 1 mod 1p
r ra p   . Using the rules yields 

      1 ind ind 1 mod 1r rp a p   . 

Clearly  0 1 modr p  so  ind 1 0r  . Substituting this into the above 

     1 ind 0 mod 1rp a p   . 

The  gcd 1, 1 1p p p      and  1 0p   because  1 0 0p    . Hence,  

we have 1p   incongruent solutions and dividing by 1p   gives 

   ind 0 mod 1r a  . 

Therefore  indr a   1, 2, 3, 4,  , 1p   which is the reduced residue system 

modulo p.  
Therefore 0 1 2 1, , , , pa r r r r   . Since r is in the reduced residue system so mr  

is also in the reduced residue system modulo p by Proposition (6.11). This 
completes our proof. 

■ 
 

20. We are asked to prove Wilson’s Theorem by using primitive roots: 

If p is prime then    1 ! 1 modp p   . 

Proof. 
Let p be prime so it has a primitive root r because by the Primitive Root (6.22): 

Every prime p has a primitive root and there are  1p   incongruent 

primitive roots. 

By Proposition (6.11): 
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If r is a primitive root of n, then  
 2 3, , , , nr r r r       

are congruent modulo n to  1 2 3, , , , nr r r r  in some order.  

These rj’s where  1 j n   are members of the reduced residue system 

modulo n. In our case we have n p  where p is prime so the reduced residue 

system of p are integers  1, 2, 3, , 1p   modulo p. Recall that   1p p   . 

Therefore, we have 

     2 3 1 1 2 3 1 1 ! modpr r r r p p p             .   

On the left – hand side we use the rules of indices and the following result: 

 11 2 3 1
2

m m m      .  

Hence, we have 
 

 

       

1 2 3 12 3 1

1 1
2

1 1
2 1 ! mod (*)

pp

p p

pp

r r r r r

r

r p p

    





    



  



 

Applying Corollary (4.2): 

 modpa a p  

Gives  modpr r p . Substituting this into (*) yields 

         
1 11 1
2 2 1 ! mod

p ppr r p p
 

     (�) 

By FlT (4.1) we have  1 1 modpr p  . Therefore  

   
21 11 2 1 mod

ppr r p


     
. 

By Lemma (4.3): 

   2 1 mod 1 modx p x p     

Applying this on  
   

21 1
2 1 mod

p
r p

     
 gives  

   
1 1
2 1 mod

p
r p


  . 

However, as r is a primitive root of p so 
 1 1

2
p

r


  1 mod p  which implies 



                                                             Complete Solutions 6.4     Page 21 of 23 

   
1 1
2 1 mod

p
r p


 . 

Substituting this into (�) gives 

     
1 1
21 ! 1 mod

p
p r p


   . 

This completes our proof. 
■ 

 

21. We need to solve 6 1 13x y   which is equivalent to  6 1 mod 13x  . By 

Example 19 we have that 2 is a primitive root of modulo 13. So, taking ind2 of 
both sides of this congruence gives 

    
    

6
2 2

2 2

ind ind 1 mod 12

6 ind ind 1 mod 12 Linear Form

x

x


     

 

Since 2 is a primitive root of 13 so    2ind 1 13 13 1 12    . Putting this 

into the above yields 

   26 ind 12 mod 12x    (*) 

The  gcd 6, 12 6  and 6 12  so we have 6 incongruent solutions. Dividing 

(*) by 6 gives 

   2ind 2 0 mod 2x   . 

Hence    2ind 2 0 mod 2x    which means that we have an even integer; 

   
 

 

2
2 4 6 8 10 12

ind 2, 4, 6, 8, 10, 12 mod 12

2 , 2 , 2 , 2 , 2 , 2 mod 13

4, 3, 12, 9, 10, 1 mod 13

x

x






 

Our solutions are  1, 3, 4, 9, 10, 12 mod 13x  .  

Finding the y values for these x  by transposing 6 1 13x y   to  
6 1
13

xy    (**) 

Substituting 1, 3, 4, 9, 10, 12x   into (**) yields 
6 6 6 6

6 6

1 1 3 1 4 1 9 10, 56, 315, 40 880,
13 13 13 13

10 1 12 176 923, 229 691
13 13

y        

  
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Our solutions are 

       
   

1, 0 , 3, 56 , 4, 315 , 9, 40 880 ,

10, 76 923 , 12, 229 691

x y x y x y x y

x y x y

       

   
 

22. (a) We use Proposition (6.18) to find all the primitive roots of 61: 

Let r be a primitive root modulo p where p is prime. Then  modmr p  is also a 

primitive root modulo p provided  gcd , 1 1m p   . 

We are given that 2 is a primitive root of 61. Let 2r   and m be an integer 
which is relatively prime to  61 61 1 60    . How many of these integers 

are there? 

 60 12   and these 12 integers are  

 1, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 49, 53, 59m    

Evaluating 2m  for each of these integer values we have 

 12 2 mod 61   

 72 128 6 mod 61   

 112 6 16 96 35 mod 61     

 132 35 4 140 18 mod 61     

 172 18 16 288 44 mod 61     

 192 4 44 176 54 mod 61     

 232 54 16 864 10 mod 61     

 29 62 10 2 10 64 10 3 30 mod 61        

 312 4 30 120 59 mod 61     

   37 62 2 59 64 2 6 55 mod 61         

     41 42 2 6 16 6 96 26 mod 61          

 432 4 26 104 43 mod 61     

 472 16 43 688 17 mod 61     

 492 4 17 68 7 mod 61     

 532 16 7 112 51 mod 61     

   59 62 2 51 64 10 30 31 mod 61         
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Hence all the primitive roots of 61 in ascending order are given by 

 2, 6, 7, 10, 17, 18, 26, 30, 31, 35, 43, 44, 51, 54, 55, 59 .  

(b) We need to show that 2 61x r y   has no solutions where r is one of the 
primitive roots of part (a).  
Proof. 
We convert the Diophantine equation 2 61x r y   to modular arithmetic; 

 2 mod 61x r . 

We know 61 is prime so it has a primitive root, say r. Taking indices to the 
base r  of this gives the linear form; 

    2 ind ind mod 60r rx r  . 

The  gcd 2, 60 2  but  ind 1r r    because  1 mod 60r r . We have 2 1  

so  2 mod 61x r  has no solutions.  

■ 
(c) We need to show that 2x r py   has no solutions. 
Proof. 
Converting this 2x r py   into modular form gives 

 2 modx r p . 

We are given that p is an odd prime so it has a primitive root, r say. Taking 
indices to the base r of this equation yields 

        2ind ind mod 1 2 ind 1 mod 1r r rx r p x p     . 

Since p is an odd prime so  gcd 2, 1 2p    and 2 1  so  2 modx r p  has 

no solution. This completes our proof. 
■ 

 


