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Complete Solutions to Supplementary Problems 7 
 

1. This is straightforward because 2196 14  so we have  

 2 2196 14 14 14, 197 mod 211x x      

Hence the given quadratic congruence has the solutions  14, 197 mod 211x  . 

 

2.  (a) We need to solve  25 2 20 mod 101x x  . Subtracting 20 from both sides 

 25 2 20 0 mod 101x x    

Multiplying this congruence by 20 and simplifying yields 

 
   

     
   

2

2

22

100 40 400 0 mod 101

40 400 0 mod 101 Because 100 1 mod 101

40 400 20 0 mod 101

20 0 mod 101 20 mod 101

x x

x x

x x x

x x

  
       

     

   

 

Our solution to  25 2 20 mod 101x x   is  20 mod 101x  .  

(b) We are given the quadratic  2 6 0 mod103x x   . Factorizing this 

    2 6 3 2 0 mod103x x x x       

Using Proposition (3.14)(a): 

(a) If  0 moda b p   then  0 moda p  or  0 modb p . 

On     3 2 0 mod 103x x    gives 

 , 1013 0 or 2 0 3, 2 3 mod 103x x x         

Hence our solution to  2 6 0 mod103x x    is  , 1013 mod103x  . 

 

3. We are asked to solve  2 7 mod 787x  . We use the result of question 12 of 

Exercises 7.1: 

If a is a quadratic residue of p where  3 mod 4p  then the quadratic congruence 

 2 modx a p  has the solutions  
1

4 mod
p

x a p


  . 
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First  787 3 mod 4  and now we need to test if 7 is a quadratic residue of 787. 

How? 

We evaluate the Legendre symbol 7
787
     

 by using Corollary (7.17): 

     
     

if  1 mod 4 or 1 mod 4

if  both  3 mod 4 and 3 mod 4

q p p qp
q q p p q

              
 

We have  

 


 


 
 

 


Because 7 787 3 mod 4

Because 787 3 mod 7 Because 7 3 mod 4 Because 7 1 mod 3

7 787
787 7

3 7 1 1
7 3 3

 

  

               
                               

 

Hence 7 is a quadratic residue of 787. Now we are in a position to use the above 
result of question 12 of Exercises 7.1. We have 

 
787 1

19747 7 mod 787x


      (�) 

Computing some simpler powers of 7 gives 

 47 2401 40 mod 787    

 8 27 40 26 mod 787   

 16 27 26 676 mod 787   

 177 7 676 10 mod 787    

We use this last result  177 10 mod 787  to reduce our calculations: 

 187 7 10 70 mod 787    

 35 17 187 7 7 10 70 700 mod 787      

   351 17 37 7 10 1000 213 mod 787     

   468 17 47 7 10 10000 556 mod 787     

   585 17 57 7 10 100 000 51 mod 787     

We use these results to evaluate  1977 mod 787x  . 
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   

 

22 85 27197 85 27

2 17 10

10

7 7 7 7

51 7

2601 10 7 2601 10 26 49 105 mod 787

x  



        
  
     
                  

 

Hence our solution to the given quadratic  2 7 mod 787x   is  

 105 105, 105 105, 682 mod 787x      

We also need to solve the Diophantine equation 2 7 787x y  . 

Because  105, 682 mod 787x   we have an infinite number of solutions but we 

choose the simplest of these which is 105, 682x  . 

Substituting these into 2 7 787x y   and transposing gives 
2

2 105 7105 7 787 14
787

y y       

2
2 682 7682 7 787 591

787
y y       

Hence 105, 14x y   and 682, 591x y  .  

 

4. (a) In order to compute the square root of  3 mod 131  we have to solve 

 2 3 mod131x  . 

First, we need to test whether 3 is a quadratic residue of 131. How? 
By evaluating the Legendre symbol 

 


 


Because 3 131 mod 4 Because 131 2 mod 3

3 131 2
131 3 3 

                             
  

Testing for the integer 2 is given by  

(7.15)      
 
 

1 if  1 mod 82
1 if  3 mod 8

p
p p

              
 

Since  3 3 mod 8  so  

 3 2 1 1
131 3
                   

 

Hence 3 is a quadratic residue of 131 so the square root of  3 mod 131  exists. 

Also  131 3 mod 4  so we can use the result of question 12 of Exercises 7.1: 
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If a is a quadratic residue of p where  3 mod 4p  then the quadratic congruence 

 2 modx a p  has the solutions  
1

4 mod
p

x a p


  . 

Applying this result we have  

 
131 1

3343 3 mod 131x


     

Evaluating some low powers of 3: 

 43 81 50 mod 131    

     2 28 43 3 50 2500 11 mod 131      

   216 8 23 3 11 121 10 mod 131     

Expressing the index 33 as a multiple of 16 and any remainder gives 

 
   

233 32 16

2

3 3 3 3 3

10 3 300 38 mod 131

x                
                

 

The square roots of  3 mod 131  are  38 38, 93 mod 131x   .  

(b) To find the square root of  11 mod127  means we need to solve 

 2 11 mod127x    

First, we need to check whether 11 is a quadratic residue of modulo 127. This 

means we must evaluate the Legendre symbol 11
127
     

. How? 

We use the Corollary (7.17): 

     
     

if  1 mod 4 or 1 mod 4

if  both  3 mod 4 and 3 mod 4

q p p qp
q q p p q

              
 

Therefore  

 


 


Because 11 127 3 mod 4 Because 127 6 mod 11

By multiplicative11 127 6 2 3
property127 11 11 11 11  

                                                                
 

Testing for the integer 2 is given by:  

(7.15)      
 
 

1 if  1 mod 82
1 if  3 mod 8

p
p p

              
 

Since  11 3 mod 8  so 2 1
11
       

 and evaluating the other Legendre symbol 
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  
by (7.15)

3 11 2 1 1
11 3 3
                                 

  

Substituting 2 1
11
       

 and 3 1
11
      

 into the above calculation yields 

 11 2 3 1 1 1
127 11 11
                                 

 

Hence 11 is a quadratic residue of 127 so the square root of  11 mod127  exists. 

Now we must find it. How? 

Since  127 3 mod 4  so we use the result of question 12 of Exercises 7.1: 

If a is a quadratic residue of p where  3 mod 4p  then the quadratic congruence 

 2 modx a p  has the solutions  
1

4 mod
p

x a p


  . 

This gives 

 
127 1

32411 11 mod 127x


      (�) 

Evaluating some simpler powers of 11: 

 211 121 6 mod 127    

   2411 6 36 mod 127    

 511 36 11 396 15 mod 127     

 10 211 15 225 98 mod127    

   1211 98 6 588 47 mod127      

 1311 47 11 517 9 mod127     

Using a combination of these powers with the rules of indices to evaluate x in (�) 
gives 

   232 13 5 211 11 11 11 9 15 11 13 365 30 mod 127x                   
 

Hence the square roots of  11 mod127  are  

 30 30, 30 30, 97 mod 127x       

(c) In order to compute the square root of  3 mod 251  we have to solve 

 2 3 mod 251x  . 
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First, we need to test whether 3 is a quadratic residue of 251. How? 
By evaluating the Legendre symbol 

 


 


Because 3 251 mod 4 Because 251 2 mod 3

3 251 2
251 3 3 

                             
  

Testing for the integer 2 is given by  

(7.15)      
 
 

1 if  1 mod 82
1 if  3 mod 8

p
p p

              
 

Since  3 3 mod 8  so  

 3 2 1 1
251 3
                   

 

Hence 3 is a quadratic residue of 251 so the square root of  3 mod 251  exists. 

Also  251 3 mod 4  so we can use the result of question 12 of Exercises 7.1: 

If a is a quadratic residue of p where  3 mod 4p  then the quadratic congruence 

 2 modx a p  has the solutions  
1

4 mod
p

x a p


  . 

Applying this result we have  

 
251 1

6343 3 mod 251x


     

Evaluating some low powers of 3: 

 53 243 8 mod 251    

     2 210 53 3 8 64 mod 251     

     215 5 53 3 3 64 8 512 241 10 mod 251           

Expressing the index 63 as a multiple of 15 and any remainder gives 

 
   

463 60 3 15

4

3 3 3 3 27

10 27 270 000 175 mod 251

x                
                

 

The square roots of  3 mod 251  are  

 175 175, 175 175, 76 mod 251x     . 

 

5. (a) We need to compute the Legendre symbol 751
919
     

. We use Corollary (7.17): 
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     
     

if  1 mod 4 or 1 mod 4

if  both  3 mod 4 and 3 mod 4

q p p qp
q q p p q

              
 

We have 

 


 




Because 751 919 3 mod 4 Because 919 168 mod 751

By the multiplicative property and 8 3 7 168

By 

751 919 168
919 751 751

8 3 7
751 751 751

  

  

                             
                             






3 2

2

2 2 2

1

1

2 2 751 751
751 751 3 7

2 1 2
751 3 7

2 2
751 7

 





                                                          

 
                                           

         
Because 

           

 

Testing for the integer 2 is given by:  

(7.15)      
 
 

1 if  1 mod 82
1 if  3 mod 8

p
p p

              
 

 Since  751 7 1 mod 8   so 2 2 1
751 7
               

 and substituting this into the above 

751 2 2 1 1 1
919 751 7
                              

 

 Since 751 1
919
       

 so the quadratic congruence  2 715 mod 919x   has no solutions 

or the square root of  715 mod 919  does not exist. 

(b) We need to evaluate the Legendre symbol 123
4567
     

. 

123 3 41 3 41
4567 4567 4567 4567
                                        

  (*) 

Computing each of the Legendre symbols on the right – hand side: 

 


 


Because 4567 3 mod 4 Because 4567 1 mod 3

Because 1 is a3 4567 1 1
quadratic residue4567 3 3 

                                       
 

The other Legendre symbol is  

 


 


2

because 41 1 mod 4 because 4567 16 mod 41

41 4567 16 4 1
4567 41 41 41 

                                       
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Substituting these evaluations into (*) gives 

 123 3 41 1 1 1
4567 4567 4567
                                

 

Hence the quadratic congruence  2 123 mod 4567x   is not solvable. 

(c) We need to evaluate 7892
1 234 567 891

      
. Using the given hint and the 

multiplicative property of the Legendre symbol we have 
2

1

7892 2 1973 1973
1 234 567 891 1 234 567 891 1 234 567 891 1 234 567 891



                                                 
 (*) 

Using Corollary (7.17): 

     
     

if  1 mod 4 or 1 mod 4

if  both  3 mod 4 and 3 mod 4

q p p qp
q q p p q

              
 

 On right – hand side gives 
 

 


 
Because 1973 1 mod 4

2 2

1

1 234 567 8911973 628
1 234 567 891 1973 1973

2 157 2 157 157 �
1973 1973 1973 1973





                             
                                         

 

 Using Corollary (7.17) to reduce the calculation further 

 


 


 


 




Because 173 1 mod 4 Because 1973 89 mod 157

Because 89 1 mod 4

Because 157 68 mod 89

2

1

157 1973 89
1973 157 157

157
89

68
89

2 17
89 89

 







                           
      
      

                


2

89 4 mod 17

17 89 4 2 1
89 17 17 17

                                         

 

 Substituting this 157 1
1973
      

 into  �  gives  

1973 157 1
1 234 567 891 1973

              
. 
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 Putting this 1973 1
1 234 567 891

      
 into (*) yields 

7892 1973 1
1 234 567 891 1 234 567 891

                  
. 

 Hence 7892 is a quadratic residue of 1 234 567 891, that is the quadratic  

 2 7892 mod 1234 567 891x   has solutions. 

 
6. We are asked to find the first primitive root of modulo 97. We are given 
that 97 is prime so  97 96  . The prime factorization of 96 is 596 2 3   and 

the factors of 96 are 1, 2, 3, 4, 6, 8, 12, 16, 24, 32, 48 and 96. 
We only need to test the 32 and 48 as the index since all the others (1, 2, 3, 4, 6, 
8, 12, 16, 24) are factors of 48.  

If r is a primitive root of modulo 97 then 32r   1 mod 97  and 48r   1 mod 97 . 

Note that if 97p   then  

1 97 1 48
2 2

p    

We trial 2r   and test  482 mod 97x . This is given by Euler’s criterion because 

Euler’s Criterion says: 

a is a quadratic residue of  p     
1

2 1 mod
p

a p


 . 

Hence, we test the Legendre symbol 2
97

     
. Since  97 1 mod 8  so 2 is a 

quadratic residue of 97 because 

(7.15)      
 
 

1 if  1 mod 82
1 if  3 mod 8

p
p p

              
 

Therefore  482 1 mod 97  so 2 cannot be a primitive root of modulo 97. We don’t 

need to test whether  322 1 mod 97  because 2 cannot be a primitive root of 97. 

Next, we trial 3r   and evaluate the Legendre symbol 3
97

     
. 

 


 


Because 97 1 mod 4 Because 97 1 mod 3

3 97 1 1
97 3 3 

                            
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Therefore 3 is a quadratic residue which implies that  483 1 mod 97  so 3 cannot 

be a primitive root of 97. 
Clearly 4r   is not a primitive root of modulo 97 because 4 is a square number so 

it is a quadratic residue of 97 which implies  484 1 mod 97 . 

 Now we trial 5r : 

 


 


Because 97 1 mod 4 Because 97 2 mod 5

5 97 2 1
97 5 5 

                            
 

Hence 5 is a quadratic non – residue of 97. This time we need to test  

 325 mod 97x   

because 5 could be a first primitive root of 97. 

 35 125 28 mod 97   

   26 3 25 5 28 784 8 mod 97     

 Using these to evaluate  325 mod 97x : 

   532 30 2 6 55 5 5 5 25 8 25 819200 35 mod 97          (�) 

 Since 325 35   1 mod 97  so 5 is a primitive root of 97. 

 We need to use this primitive 5 to find the square root of  35 mod 97  which 

means we need to solve  2 35 mod 97x  . Since the result (�) shows  

 325 35 mod 97  

and we are asked to solve  2 35 mod 97x   so let 165x  . Then 

   2 1635 mod 97 5 mod 97x x   . 

Therefore the square roots of  35 mod 97  are given by 

 
 

216 6 4

2

5 5 5

8 625 64 43 2752 36 36, 36 36, 61 mod 97

x      
  

                 
 

Hence the solutions to  2 35 mod 97x   are  36, 61 mod 97x   which implies 

that the square roots of  35 mod 97  are  36, 61 mod 97 . 
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7. We are asked to find a primitive root of modulo 101. We are given that 101 
is prime so  101 100  . The prime factorization of 100 is 2 2100 2 5   and the 

positive factors of 100 are 1, 2, 4, 5, 10, 20, 25, 50 and 100. 
We only need to test 20 and 50 as the index because 1, 2, 5, 10 and 25, are factors 
of 50 and 4 is a factor of 20.  

If r is a primitive root of modulo 101 then 20r   1 mod101  and 50r   1 mod101 . 

Note that if 101p   then  

101 1 50
2
   

We trial 2r   and test  502 mod 101x . This is given by Euler’s criterion: 

a is a quadratic residue of  p     
1

2 1 mod
p

a p


 . 

Hence, we test the Legendre symbol 2
101
     

. Since  101 5 mod 8  so 2 is a 

quadratic non - residue of 101 because 

(7.15)      
 
 

1 if  1 mod 82
1 if  3 mod 8

p
p p

              
 

Therefore 502 1   1 mod101  so 2 could be a primitive root of modulo 101. We 

need to test whether  202 1 mod 101  because if this is true then 2 cannot be a 

primitive root of 101. Computing a simpler power of 2: 

  102 1024 14 mod 101    (§) 

 220 10 22 2 14 196 95      1 mod 101  

Since 202 95   1 mod 101  and 502 1   1 mod101  so 2 is a primitive root of 

101.  

(a) We need to solve the non – linear Diophantine equation 2 101 14x y  . We 

can express this as a quadratic congruence  2 14 mod101x   and solve this. Using 

the primitive root 2 of modulo 101 we have, by using index to the base 2: 

    
    

2
2 2

2 2

ind ind 14 mod 100

2 ind ind 14 mod 100

x

x



 
 

By the above calculation (§) we have  2ind 14 10 . Putting this in gives 
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           2 2 22 ind 10 mod 100 ind 5 mod 50 ind 5, 55 mod 100x x x       

Therefore, from the last calculation    2ind 5, 55 mod100x   we have 

 5 552 , 2 mod 101x   

Again, we don’t need to work out  552 mod 101x   because the square roots of 

 14 mod101  are given by 

 52 32 32, 69 mod 101x     

Substituting the simplest of these  32, 69 mod 101x   which is 32, 69x   into 

the given Diophantine equation 2 101 14x y   gives 
2 2 214 32 14 69 14, 10, 47
101 101 101

xy       

Two solutions to the given Diophantine equation are  

 32, 10x y   and  69, 47x y  . 

(b) We need to solve the non – linear Diophantine equation 2 101 22x y  . We 

can express this as a quadratic congruence  2 22 mod101x   and solve this. Using 

the primitive root 2 of modulo 101 we have  

    2 22 ind ind 22 mod 100x    (�) 

We need to find a power of 2 which gives 22 modulo 101. Evaluating powers of 2 
gives 

 11 102 2 2 14 2 28 mod101       

 12 112 2 2 28 2 56 mod101      

 13 122 2 2 56 2 11 mod 101      

Since 22 2 11   so by using the last computation we have 

 14 132 2 2 11 2 22 mod101      

As  142 22 mod 101  so  2ind 22 14 . Substituting this into (�) gives 

   22 ind 14 mod100x   

We can solve this congruence because 2 14 . Dividing by 2 yields 
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       2 2ind 7 mod 50 ind 7, 57 mod100x x    

From this    2ind 7, 57 mod100x   we have  

 7 57 72 , 2 2 128 27 27, 74 mod 101x       

The simplest of these is 27, 74x  , substituting these into 2 101 22x y   and re-

arranging gives 
2 2 222 27 22 74 22, 7, 54
101 101 101

xy       

Hence our solutions to the given Diophantine equation 2 101 22x y   are 

 27, 7x y   and  74, 54x y   

(c) We need to solve the non – linear Diophantine equation 2 101 44x y  . We 

need to solve     2 22 ind ind 44 mod 100x  . From calculation of part (b) we 

have  14 132 2 2 11 2 22 mod101      therefore 

 15 142 2 2 22 2 44 mod101      

Hence  2ind 44 15  and substituting this into     2 22 ind ind 44 mod 100x  : 

   22 ind 15 mod100x   

However, the  gcd 2, 100 2  and 2 15  so the above congruence has no 

solutions. This means that 44 is a quadratic non – residue of 101. 

The given Diophantine equation 2 101 44x y   has no solutions. 
 

8. We need to show that  
2 1
41 1

p

p

       
 is false. How? 

Produce an example where this result is false.  
Let 11p   then  

   
211 1 30
41 1 1 1

11

          
.   

Hence this implies that 1  is a quadratic residue of 11.  

Since  11 3 mod 4  so by applying Proposition (7.11): 
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 
 

1 if  1 mod 41
1 if  3 mod 4

p
p p

             
 

We have 1 1
11

        
 which implies that 1  is a quadratic non – residue of 11. 

9. We need to find the primes 3p   for which 3 is a quadratic residue modulo 
p. 

We consider the Legendre symbol 3
p

     
. By using Corollary (7.17): 

     
     

if  1 mod 4 or 1 mod 4

if  both  3 mod 4 and 3 mod 4

q p p qp
q q p p q

              
 

Any odd prime p satisfies  1 or 3 mod 4p  . Considering these two cases. 

Case I: If  1 mod 4p   then 3
3
p

p
              

 and this is equal to 1 provided 

 1 mod 3p   because  

3 1 1
3 3
p

p
                            

 as 1 is always a quadratic residue. 

Hence one solution that gives 3 is a quadratic residue of p is when p satisfies both 
the conditions  

 1 mod 4p   and  1 mod 3p   

Using the result of Chinese Remainder Theorem of question 8(c) of Exercises 3.4: 

   1 2mod mod , , ,k na b m a b m m m        

Hence    1 mod 3 4 1 mod12p    . 

Case II: If  3 mod 4p  then 3
3
p

p
               

. How can 3 be a quadratic residue of 

p? 

When 1
3
p       

 and this is the case when  2 mod 3p  because  

(7.15)      
 
 

1 if  1 mod 82
1 if  3 mod 8

p
p p

              
 

Hence  
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 3 2 1 1
3 3
p

p
                                 

 provided  3 mod 4p  and  2 mod 3p  

We need to find prime p which satisfies both these conditions. Using the Chinese 
Remainder Theorem formula: 

(3.23)   1 1 1 2 2 2 3 3 3 r r rx a N x a N x a N x a N x      

We have  

 1 1 1 2 2 2 mod 3 4p a x N a N x     (*) 

We have 1 23, 4N N   and  

 1 13 1 mod 4 3x x     

 2 24 1 mod 3 1x x     

Substituting 1 23, 4N N  , 1 3x  , 2 1x  , 1 23, 2a a   into (*) gives 

     3 3 3 2 4 1 35 1 mod 12p          

Hence 3 is a quadratic residue of p provided  1 mod12p  . 

Summarizing both these results we have 3 is a quadratic residue or we can find 

the square root of  3 mod p  if and only if  1 mod12p  . 

(ii) (a) We need to factorize 2306 3 93 633  . Clearly 3 is a factor and  

93 633
31 211

3
  or 93 633 3 31211  . 

Since the integer looks like 2 3x   so other odd prime factors p must satisfy 

 1 mod12p  . The first few primes of this format are 11, 13, 23, 37, 47, 59, 

61, … . Trialling  these primes gives  

 31 211
2837.36 2dp

11
  

 31 211
2400.85 2dp

13
  

31 211
1357

23
  

Hence 31 211 23 1357  . We still need to factorize 1357 . Again it must have 

prime factors which satisfy  1 mod12p   and also it has to have a prime 
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factor which is less than or equal to 1357 36      and the only prime left to trial 

is 23 again: 

1357 59 1357 23 59
23

     

Putting all this together we have  
2

2

306 3 93 633
3 31 211

=3 23 1357=3 23 23 59=3 23 59

 
 

      
 

Our prime factorization of 2306 3 93 633   is 23 23 59  . 

(b) We are asked to factorize 2214 3 45 793  . Again the odd prime factors p of 

this number 45 793 satisfy  1 mod12p  . The first few primes of this format 

are 11, 13, 23, 37,… . Trialling the first of these, 11, gives  
45 793

4163
11

   or 45 793 4163 11  . 

By the 11 test we know 11 does not go into 4163 so we trial the next prime of 
the above format which is 13: 

 4163 320.23 2dp
13

   

So, 13 is not a factor so we trial the next prime which is 23: 

4163 181
23

   which implies 4163 23 181  . 

We only need to factorize 181. Well 181 13      and any prime factor of 181 

must also satisfy  1 mod12p   but none of them do as we have checked 

above, so 181 is prime. Hence  
2214 3 45 793 11 4163=11 23 181      . 

(c) We asked to factorize 2602 3 362 401  . Let p be a prime factor of this 

number then  1 mod12p  . Trialling the first few primes of this format which 

are 11, 13, 23, 37, 47, 59, 61, … . Clearly 11 is not a factor of 362 401  because of 

the well – known 11 test which we established in Chapter 3. The next prime is 13 
and we have  

362 401
27 877

13
  implies 362 401 13 27 877   

Trialling 13 again gives  
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 27 877
2144.38 2dp

13
   

Trying the next few primes 23, 37, 47, 59 we find that these are not factors. 
However, trying 61 gives 

27 877
457

61
  which implies 27 877 61 457   

Now 457 21      and none of the primes which are  1 mod12  and below 21, 

that is 11 and 13 go into 457 otherwise they would have been factors earlier on. 
Hence 457 is prime. Therefore 

2602 3 362 401 13 27 877=13 61 457       

 
10. In order to solve the given Diophantine equations we first solve the 
equivalent quadratic congruence.  

(a) We are asked to solve 2 11 5x y   which we can rewrite as 

 2 5 11 5 11x y y      implies  2 5 mod11x    

 First, we test whether 5 is a quadratic residue of modulo 11 by computing the 

Legendre symbol 5
11
     

: 

5 11 1 1 Because 1 is always a QR
11 5 5
                                  

 

 Therefore 5 is a quadratic residue of 11 and by trial and error we have 

   2 5 mod 11 4 4, 7 mod 11x x      

 Substituting 4x   and 7x   into the above quadratic  2 5 11x y    gives 

 2 5 164 16 5 11 1
11

y y         

 2 5 497 49 5 11 4
11

y y         

 Hence a pair of solutions are 4x  , 1y    and 7x  , 4y   .  

(b) Similarly, we solve 2 23 2x y  . Rewriting this  

 2 2 23 2 23x y y      

 Computing the Legendre symbol 2
23

     
 by using 
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(7.15)      
 
 

1 if  1 mod 82
1 if  3 mod 8

p
p p

              
 

 With  23 1 mod 8  so 2 is a quadratic residue of 23. Clearly 

 25 25 2 mod 23    

 Therefore, our solutions are  5 5, 18 mod 23x   .  

 Substituting 5, 18x   into  2 2 23x y    and transposing gives 

 2 2 255 25 2 23 1
23

y y         

 2 2 32418 324 2 23 14
23

y y         

 Particular solutions are 5, 1x y   and 18, 14x y  . 

(c) Solving 2 53 1x y   in a similar manner. Re-arranging this 

 2 1 53x y    

 Since  53 1 mod 4  so by Proposition (7.11): 

 
 

1 if  1 mod 41
1 if  3 mod 4

p
p p

             
 

 We conclude that 1 1
53

       
  which implies that 1  is a quadratic residue of 53.  

 We can solve the quadratic congruence  2 1 mod 53x  . First we need to find a 

primitive root of 53. We have  53 52   and the positive factors of 52 are 1, 2, 4, 

13, 26 and 52. We only need to test the factors 4 and 26 as 26 includes 2 and 13. 

We trial 2r  . We need to show that 262   1 mod 53  and 42   1 mod 53 . 

Clearly  42 8   1 mod 53  so we are left to evaluate  262 mod 53x . We have 

 62 64 11 mod 53    

 12 22 11 121 15 mod 53    (�) 

 24 22 15 225 13 mod 53    

Using this last result, we have 
26 24 22 2 2 13 4 52 1        1 mod 53  (*) 
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Therefore 2 is a primitive root of 53.  

By (*) we have  262 1 mod 53  and we need to solve  2 1 mod 53x  . Let 
132x   then  

   2 26 132 1 mod 53 2 mod 53x x    . 

By (�) we have  

   12 132 15 mod 53 2 2 15 30 mod 53      

Our two solutions are  ,30 30, 30 30 23 mod 53x     . Writing our solutions 

in ascending order gives  , 3023 mod 53x  . 

Substituting , 3023x   into  2 1 53x y    and transposing yields 

 2 1 52923 529 1 53 10
53

y y          

 2 1 90030 900 1 53 17
53

y y          

Particular solutions are , 1023 yx   and 30, 17yx  . 

 
11. (a) We are asked to prove there are infinitely many primes of the form 8 3k  . 
Proof. 
Let n be any natural number. Consider the number  

  2
3 5 7 2 1 2N n            (*) 

The product in N is odd therefore we have  3 mod 8N  . If all the prime divisors 

of N are of the form 8 1k   then so is N (you can easily show this by 
mathematical induction). Hence N has a prime divisor p which satisfies 

 3 mod 8p  . We have 

     
   

2

2

0 mod 3 5 2 1 2 0 mod

3 5 2 1 2 mod

N p N n p

n p

           
         




  

We need to show that the only primes p which satisfy this quadratic  

   2
3 5 7 2 1 2 modn p           

are of the form   3 mod 8p  because we want to show infinitely many primes of 

the form 8 3k  .  
By question 9 of Exercises 7.3 the Legendre symbol  
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 
 

1 if 1 or 3 mod 82
1 if 1 or 3 mod 8

p
p p

              
  

Hence the prime p which is a divisor of N is of the form  3 mod 8p  or 

8 3p k  . Now this p is greater than n in (*) and n is an arbitrary natural 
number so we can find primes of the form 8 3p k   greater than any natural 
number. This completes our proof. 

■ 
(b) We are asked to prove there are infinitely many primes of the form 8 3k  . 
Proof. 
Let n be any natural number and consider the number  

  2
3 5 7 2 1 4N n           

The square term in N is odd because it is the product of odd numbers. Therefore 

   2
3 5 7 2 1 4 5 3 mod 8N n              

N has a prime divisor p which satisfies  3 mod 8p  . Why? 

Suppose all the prime factors p of  3 mod 8N   satisfy  1 mod 8p   then 

    8 1 8 1 64 8 1 8 1k m km k m        ,  

which implies that  1 mod 8N   which it isn’t.  

We have 

       2 2
3 5 2 1 4 0 mod 3 5 2 1 4 modN n p n p                         

Now the primes for which 4  is a quadratic residue is when the Legendre symbol 
4 1

p
       

. Thus 



2

1

4 1 4 1 2 1
p p p p p p



                                                           
. 

Now by Proposition (7.11): 

Let p be an odd prime. Then  
 
 

1 if  1 mod 41
1 if  3 mod 4

p
p p

             
. 

Hence  1 mod 4p   and from above we have  3 mod 8p  . Combining these 

together,  1 mod 4p   and  3 mod 8p  , gives  3 mod 8p   because  
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   3 mod 8 8 3 3 mod 4p k    . 

 Since p n  for any arbitrary n we have an infinitely many primes of the form 

 3 mod 8p  or 8 3k  . 

■ 
 

12. We are asked to show that if p is a prime of the form 4 3k   and a, b are integers 

such that  2 2 0 moda b p   then  0 moda b p  .  

Proof. 

Suppose b  0 mod p  which implies p b . From  2 2 0 moda b p   we have 

 2 2 moda b p  

The Legendre symbol  

  


2

2 2

Because 3 mod 4

1 because  is a QR

1 1 1
p

b

b b
p p p p 



                                  
  

The last step follows from the fact that we are given  4 3 3 mod 4p k    and 

by Proposition (7.11): 

Let p be an odd prime. Then  
 
 

1 if  1 mod 41
1 if  3 mod 4

p
p p

             
. 

Hence 2b  is a quadratic non – residue of p. There are no solutions to  

 2 2 moda b p  

Therefore, there are no solutions to  2 2 0 moda b p   or 2 2a b   0 mod p . 

This is a contradiction because we are given  2 2 0 moda b p  . So  0 modb p . 

Similarly, we have  0 moda p .  

■ 
 

13. (a) We need to write 313 as sum of two squares but we first need to check that 

this is congruent to 1 modulo 4: 
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 313 1 mod 4   

Thus, we can express 313 as sum of two squares; 

2 2 2313 313a b b a       

We substitute integer values for a in this 2313b a   and stop once b is an 

integer: 

2313 2 309b     

2313 3 304b     

2313 4 297b     

2313 5 288b     

2313 6 277b     

2313 7 264b     

2313 8 249b     

2313 9 232b     

2313 10 213b     

2313 11 192b     

2313 12 169 13b      

Therefore 2 2313 12 13  . We will describe a more systematic way to write a 

given integer as the sum of two squares in the next chapter. 

(b) Similarly, we have  1237 1 mod 4  so we express 1237 as the sum of two 

squares. By transposing  

2 2 21237 1237a b b a       

Using brute force calculation, we have 

21237 9 34b     

Therefore 2 21237 9 34  .  

(c) First  1249 1 mod 4  so we can express 1249 as the sum of two squares: 

2 2 21249 1249a b b a      

By substituting various integers for a we have 
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21249 15 32b      
Therefore 2 21249 15 32  .  
 

14. We need to show that there are integers a, b  such that 2 22p a b    

 1 or 3 mod 8p  .  

Proof. 

 Assume there are integers a, b  such that 2 22p a b  . Thus, we have 

   2 2 2 22 0 mod 2 moda b p a b p    . 

From the last step  2 22 moda b p  we have 22b  is a quadratic residue of the 

prime p. The Legendre symbol of this 
22 1b

p

      
 therefore  



2 2

1

2 2 2 1b b
p p p p



                                 
 

Hence 2  is a quadratic residue of modulo p. By question 9(ii) of Exercises 7.3: 

If  2 2p x   then  1, 3 mod 8p  .   

We conclude that  1 or 3 mod 8p  . 

(a) Since  211 3 mod 8p    we have 2  is a quadratic residue of 211. 

Writing 211 as 2 22p a b   by first transposing gives 
2

2 2 2112 211
2

aa b b      

Substituting odd integers for a because if a is even then 211 take away even is odd 

and we need to divide by 2. Trialling 1, 3, 5, 7, 9, 11, 13a   and stopping when b is 

an integer, we have   
2211 1 210 105

2 2
b     

2211 3 202 101
2 2

b     
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2211 5 186 93
2 2

b     

2211 7 162 81 9
2 2

b      

Hence we have 7, 9a b   and checking this  227 2 9 211  . 

(b) Similarly, we have  1019 3 mod 8  this means we can write 

2 21019 2a b   but we need to find a and b. We have  
2

2 2 10192 1019
2

aa b b      

Again, substituting odd integers for a we find that when 21a   we have 
21019 21 289 17

2
b     

Therefore  221019 21 2 17  . 

(c) We have  1249 1 mod 8  so we can write 1249 as 2 22a b . Finding a and b 

by brute force calculation: 
2

2 2 12492 1249
2

aa b b      

Substituting odd numbers for a and stopping once b is an integer, we have 
21249 31 144 12

2
b     

We have  221249 31 2 12  . 

 

15. We are asked to show that  
  5 1

82 1
p p

p

        
. 

Proof. 
By the multiplicative property of the Legendre symbol we have 

   

  

   

2

2

2 2

1 1
2 8

By Question 8 of Exercises 7(b) By Corollary (7.18)
1 1

2 8

By the rules of indices
4 4 1

8

2 1 2 1 2 1 1

1

1 1

p p

p p

p p p

p p p p

 

 

   

                                               

 

   

 

 
  5 14 5

8 81
p pp  

 
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■ 

Substituting 1 000 003p   into the given result  
  5 1

82 1
p p

p

        
 yields 

 
   

 
   


1 000 003 5 1 000 003 1 1 000 008 1 000 002

8 8

Because 1 000 008 is a mutiple of 8
and 1 000 002 is even

2 1 1 1
1 000 003

             
 

Hence 2  is a quadratic residue of 1 000 003. 
 

16. We are asked to prove that  4 1 modx p  has a solution   1 mod 8p  .  

Proof. 

   Let  1 mod 8p   then 8 1p k   for some positive integer k. We need to 

prove that the quartic congruence  4 1 modx p  has solutions.  

By FlT; 

 1 1 modpa p   provided p a   

Substituting 8 1p k   into FlT we have 

     28 41 mod 1 modk ka p a p    

By Lemma (4.3): 

   2 1 mod 1 modx p x p     

Applying this Lemma to    24 1 modka p  gives 

 4 1 1, 1 modka p    

Let kx a  is a solution to  4 4 1 modkx a p  . 

  . Assume that  4 1 modx p  has a solution. Since p is an odd prime so 

 1 mod 8p  or  3 mod 8p  . We need to show that  1 mod 8p  . 

We use proof by contradiction by dismissing the cases  1 mod 8p  and 

 3 mod 8p  . 

Suppose  1 mod 8p  then 8 1p m   for some positive integer m. 
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By FlT we have for p x ;  

   21 8 2 4 1 1 modp m mx x x p       

By Lemma (4.3): 

   2 1 mod 1 modx p x p     

We have  

     4 1 4 1 11 1 mod
m mmx x x x p       implies    11 1 1 mod

m
x p

     

This is impossible because x  1 mod p . Why? 

If  1 modx p  then 4 1x    1 mod p  and  1 mod p  are the only 

residues which are self-invertible. Hence p  1 mod 8 . 

Now suppose  3 mod 8p  . WLOG assume  3 mod 8p  then 8 3p m   for 

some positive integer m.  

 By FlT we have for p x : 

   21 8 2 4 2 1 modp m mx x x p       

By Lemma (4.3): 

   2 1 mod 1 modx p x p     

We have  

     4 2 4 2 21 1 mod
m mmx x x x p      implies    12 1 1 mod

m
x p


     

This  2 1 modx p  is impossible because we are assuming  4 1 modx p  so 

2x   1 mod p .  

 Hence p  3 mod 8  and similarly p  3 mod 8 . 

 Thus  1 mod 8p   and this completes our proof. 

■ 
 (a) We are asked to factorize 412 1 20 737  . By the above result  

 4 1 modx p  has a solution   1 mod 8p  . 
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 We deduce that the odd prime factors p of 20 737 satisfy  1 mod 8p  . Listing 

some of these factors 17, 41, 73, 89, …. 

Dividing 20 737 by each of these we find that  

20 737
233

89
  

The 233 15      and no prime below 15 is of the form  1 mod 8p  . Hence 233 is 

prime and we have 
412 1 20 737 89 233     

(b) This time we are asked to factorize 422 1 234 257  . The odd prime factors p 

of this number satisfy  1 mod 8p  . Going through the list given in part (a) we 

have 

234 257
3209

73
 . 

Testing whether 3209 is prime we need to find 3209 56     . Neither of the 

primes 17 or 41 go into 234 257 so they cannot be factors of 3209. Hence 3209 is 
prime and  422 1 234 257 73 3209    . 

(c) Factorizing 450 1 6 250 001   by examining the primes of the form 

 1 mod 8p   which are 17, 41, 73, 89, 97, 113, 137, 193, 233, 241, 257,… 

Trialling these primes as divisors of 6 250 002 we see that 
6 250 001

64 433
97

  

Again testing 64 433 to see if it is a prime: 

64 433 253      

We know need to see if the remaining primes 97  are factors of 64 433. None of 
the numbers in the list are factors so 64 433 is prime. Thus, we obtain 

6 250 001 97 64 433  . 

 

17. (i) Proof.  

The Legendre symbol  
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2 212 2 3 2 3 3 31
p p p p p p

                                                          
 

Hence the primes for which 12 is a quadratic residue or quadratic non – residue is 
the same as the ones for which 3 is a QR or NR. 
By Question 11(i) of Exercises 7.3 we have 

 
 

1 if 1 mod 1212
1 if 5 mod 12

p
p p

            
 

■ 
(ii) (a) We need to factorize 2151 12 22 789  . By part (i) we know the odd 

prime factors greater than 3 have the form  1 mod12p  .  

 Prime factors of this form are 11, 13, 23, 37, 47, … . We have 
22 789

1753
13

  

 We don’t know whether 1753 is composite or prime. We have 

1753 41       

 None of the above primes go into 1753 so 1753 is prime. Thus  
2151 12 22 789 41 1753     

 (b) Similarly factorizing 22003 12 4 011 997   we have 
2 22003 12 4 011 997 11 71 467      

 
18. (i) We need to prove that every primitive root of odd prime p is a quadratic non – 

residue of p. 

Proof. 

By the primitive root theorem (6.22) we have that the odd prime p has a primitive 

root, r say. Required to prove  

 2 modx r p  has no solutions. 

Converting this  2 modx r p  to linear form by taking indices to the base r we 

obtain 

    2 ind ind mod 1r rx r p    

The  gcd 2, 1 2p   because we are given that p is an odd prime. 
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By Proposition (6.14): 

 ind 1r r        

Now 2 1  therefore  2 modx r p  has no solutions because by Proposition 

(3.16): 

 modcx b n  has exactly g solutions provided g b where  gcd ,g c n . 

This completes our proof. 
■ 

(ii) This time we show there is a quadratic non – residue of odd prime p which is 

not a primitive root of p. How? 

Produce a counter example. 

Let 13p   and 8r   then  

 28 64 1 mod 13   implies    248 1 1 mod 13    

Hence 8r   is not a primitive root of 13. Now we need to show that 8 is a 

quadratic non – residue of 13. How? 

By evaluating the Legendre symbol 8
13
     

: 



3 2

1

8 2 2 2 2
13 13 13 13 13



                                           
  (*) 

Since  13 3 mod 8  so by  

(7.15)      
 
 

1 if  1 mod 82
1 if  3 mod 8

p
p p

              
 

we obtain 2 1
13
       

. From (*) we conclude that 8 2 1
13 13
                

 so 8 is a 

quadratic non – residue of 13. 
■ 

 

19. We need to prove that the square roots of  moda p  are given by nr  for some 

positive integer n. 
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Proof. 

We are given that a is a quadratic residue of p so the quadratic congruence  

 2 modx a p   

which implies that the square roots of  moda p  exist. Since p is prime so it has a 

primitive root by Primitive Root Theorem (6.22): 

Every prime p has a primitive root and there are  1p   incongruent primitive 

roots. 

Call the primitive root r say. Taking indices and converting the quadratic 

congruence to linear form we have 

    2 ind ind mod 1r rx a p     (*) 

Since a is a quadratic residue so by the result of question 12 of Exercises 7.2: 

2 nr  is a quadratic residue of p 

Therefore 2nr a  and substituting this into (*) gives 

    
     

2

1 by Proposition (6.14)

2 ind ind mod 1

2 ind 2 ind 2 mod 1

n
r r

r r

x r p

x n r n p


  
    


 

Since p is odd prime so  gcd 2, 1 2p   and 2 2n . The solutions are given by 

     1 1ind mod ind , mod 1
2 2r r

p px n x n n p
          

 

From the right – hand side derivation we have 

  
1 1

2 2

By the rules of indices

, , mod
p pnn n nx r r r r r p
 

    (�) 

Since r is a primitive root of p so p r  and by Proposition (7.6): 

 
1

2 1 mod
p

a p


   provided p a . 

We have  
1

2 1 mod
p

r p


   and substituting this into (�) yields 

   , 1 modn n nx r r r p    
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Therefore, the solutions of  2 modx a p  are  modnx r p  so the square roots 

of  moda p  are  modnr p . This completes our proof. 

■ 
 

20. We are asked to show that 3 25x y   has no solution. 

Proof. 

We proof this by contradiction. Suppose there is a solution, that is there are 

integers x and y such that 3 25x y  .  

The integer x can only be even or odd. 

If x is even, then  3 0 mod 8x   and so  

 2 3 5 5 3 mod 8y x     

However, 2y   3 mod 8  because 3 is a QNR of  3 mod 8p .  

If x is odd, then  

  3 3 2 3 2 25 1 4 1 1 1 4x x y x x x x y              

Since x is odd so 2x  is odd, and 2 1x x   is odd.  

Let p be a prime that divides 2 1x x   then  2 4p y   which implies  

   2 4 1 4 mody p    . 

Clearly 4 is a quadratic residue of p because 22 4 . Since y is a solution to the 

given equation so 1  must be a quadratic residue of p which implies 

 1 mod 4p  . Why? 

By question 6 of Exercises 7.1: 

1  is a QR of p  1 mod 4p  . 

 Since  2 1p x x   so  

 2 1 1 mod 4x x     

 If  1 mod 4x   then  2 1 3 mod 4x x    which is impossible. Therefore  
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  3 mod 4x  . Now we have  

        2 2 24 1 1 3 1 3 3 1 26 2 mod 4y x x x             

Hence 2 4y   is even but the odd prime p satisfies  2 4p y  . This is 

impossible. Thus, there is no solution to the non – linear Diophantine equation 
3 25x y  . 

■ 
 

21. We are asked to prove that 5  is a QR for  1, 3, 7, 9 mod 20p  . 

Proof. 

Let p be an odd prime. The Legendre symbol 

5 1 5
p p p

                            
   (�) 

By looking at the brief solutions of question 18 of Exercises 7.4 we have 

 
 

1 if  1 mod 55
1 if  2 mod 5

p
p p

              
 

Also by Proposition (7.11): 

 
 

1 if  1 mod 41
1 if  3 mod 4

p
p p

             
 

The Legendre symbol in (�) is equal to 1 if  

5 1 1
p p
               

 or  5 1 1
p p
                

. 

Considering the first case where both 5 and 1  are quadratic residues we have  

 1 1, 4 mod 5p    and  1 mod 4p  . If  1 mod 5p   and  1 mod 4p   then 

by question 8(a) of Exercises 3.4: 

 modx M p  and  modx M q  implies   modx M pq  

We obtain  1 mod 20p  . 

If  4 mod 5p  and  1 mod 4p   then by the Chinese Remainder Theorem 
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 1 1 1 2 2 2 1 2modp a x N a x N N N    (*) 

All these symbols are defined in the section on the Chinese Remainder Theorem. 

1 24, 5N N   and  

 1 14 1 mod 5 4x x     

 2 25 1 mod 4 1x x    

Substituting 1 24, 1a a   and the above evaluations into (*) gives 

      
 

4 4 4 5 1 1 mod 4 5

64 5 69 9 mod 20

p       

   
 

Hence 5  is a quadratic residue if the odd prime p satisfies  9 mod 20p  . 

Now considering the case where both 5 and 1  are quadratic non – residues. 

This is if  2 2, 3 mod 5p    and  3 mod 4p . 

Arguing along similar lines we have  3 mod 5p  and  3 mod 4p  then by the 

result of question 8 of Exercises 3.4: 

 3 mod 20p   

Also if  2 mod 5p  and  3 mod 4p  then by applying the Chinese Remainder 

Theorem we have  7 mod 20p  . 

Thus, by combining all these different combinations we have 5  is a QR for 

 1, 3, 7, 9 mod 20p  . This completes our proof. 

■ 
 

 


