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1. (a) We are asked to find [45, 81]. The prime factors of 45 and 81 are

45 =3"x5 and 81 = 3*
Applying Proposition (2.19):

max(e],f]) max(e 7f2> 111ax(63, fs)

[a, b]:p X P 7. X oee X

1 2 3
Gives

[45, 81}:[32><5, 34]

max(Q, 4) max(L 0)

=3 X5

(b) Similarly for 2000, 2015| we have

k

max(eV fA)

=3' x5 =405

2000:2><1000:2><103:2><(2><5)3:24><53

2015 =5x403 =5x13x 31
Using the above proposition we have

[2000, 2015] - [24 %5, 5x13x 31]

max(4, ()) max(B. 1) m&x([)7 1)

X D x 13

We have [2000, 2015} — 806 000.

x 31
= 2" x5 x 13" x 31' = 806 000

max((), 1)

(¢) What do you notice about the two given integers [1000, 1001} ¢

1000 and 1001 are relatively prime which means they have no factor (> 1) in

common. Using Proposition (2.20):

Let a and b be relatively prime integers then [a, b} =axb.

To the given integers yields

[1000, 1001} = 1000 x 1001 = 1 001 000

the multiples of 10 and 8:

10, 20, 30, 40, 50, - and 8, 16, 24, 32, 40, 48, ---

. We need to find the LCM of 10 and &. In this case it is easier to make a list of

Hence [10, 8} = 40 so we need to purchase 4 packages of hotdogs and 5

packages of buns.
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3. We need to find the LCM of 85 and 91. The prime decompositions of these
numbers are
85 =5x17 and 91 =7x13
Hence 85 and 91 are relatively prime because they have no factor greater than 1

in common:
[85, 91} — 85 %91 = 7735

We need to compare the fractions 64 and @:
85 91

64 64x91 5824

8 7735 7735
69 _ 69x85 _ 5865
91 7735 7735

Therefore Harry performed better on the real analysis paper.

[Mechanics]

[Real Analysis]

4. (i) In order to find [20, 265, 530} we use Proposition (2.23):

[av Aoy Ay =y an} - Hal’ Aoy Qg =y an—1]7 an}
First we find [20, 265}. The prime decomposition of these integers is given by

20 = 2° x5 and 265 = 5x 53
By applying Proposition (2.19):

[a,, b] _ plmax(e],f]) % p21nax(627 fz) % p31nax(63, fs) N pkmax(ew fA)

We have

Inax(l ()) IIl‘dX(L 1) max((), 1)

[20, 265]:[22><5, 5><53]:2 x5 x 53
= 22 x5x53 = 2x10x 53 = 1060
We using the above Proposition (2.23) we have
20, 265, 530 = [[20, 265), 530}
= [1060, 530] =1060  [because 1060 = 2 x 530

Hence [20, 265, 530}:1060.

You could also evaluate this directly as follows:

[20, 265, 530] — {22 x5 5x53, 2x5x 53]

max(z 0, 1) max(l, 1, 1) nm(o, 1, 1)

=2 X 5
=2 x5x53 =1060

Hence [20, 265, 530] = 1060.

X 53
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(ii) We are asked to find % + L + L We use the result of part (i):

265 530

[20, 265, 530| = 1060 to convert these fractions into a common denominator

1 1x53 23

20 20x53 1060

1 4x1 4
265 4x265 1060
1 2x1 2

530 2x530 1060

Adding these gives
1 1 1 33+4+2 59

+—+ =
20 265 530 1060 1060

5. (i) Since the integers 3 and 4 are relatively prime so
[3, 4}:3x4:12

Using Proposition (2.23):

[al, ay, Gy, an} = Hal, ay, g, aH], an}
We have
[3, 4, 28} — [12, 28]
The multiples of 28 are 28, 56, 84 and 84 is also a multiple of 12 so
[3, 4, 28} — {12, 28} — 84

(ii) We need to solve %—i—i—i—%—l—x:l. Transposing gives
1 1 1
z=1-|>+>+—
3 4 28
28 21 3
=1-|=+=+=
84 84 &4
., [28+2143) 52 32 8
84 84 84 21

6. (a) We need to find [60, 100] . The prime decompositions of these integers are

60 =2° x 3 x5 and 100 = 10* = 2° x 5°.
Applying Proposition (2.19):

[a’7 b] —p max(el,fl) X p Inax(€2,f2> X p max(e:;,f:{) N

1 2 3 k

max(ek A >
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We have
[22 X 3 % 5’ 22 % 52] _ 2maX(2ﬁ 2) < 3max(l«0) v 5max(lﬁ 2)
= 2" x 3 x5 = 300
Hence [60, 100} =300.

(b) We need to find 600, 1000|. Similarly we have
600 = 2° x 3x 5% and 1000 = 2° x 5°
Using Proposition (2.19) we have
2'x3x5, 2'x5'| = g7 gl ) o et
=2*x3x5° =3000
Therefore 600, 1000] = 3 000.

(c) We must determine [6 000, 10 OOO}. We have
6000 = 2* x 3 x 5> and 10 000 = 2" x 5"

Using Proposition (2.19) we have

max(4, 4) max(l, (l) max(S, 4)

[24><3><53, 24><54}:2 3 %5
—2' x 3% 5" = 30 000
Therefore [6 000, 10 000] — 30 000.

If the pair of integers are 10 times larger than the corresponding LCM is also 10

times larger.

. We need to show that [ab, CLC] =a X[b, C} given that a, b and c are positive
integers.

Proof.

By Proposition (2.22):

TXY

= y]zm

And using the given hint gcd(dx, dy) = ‘d‘gcd (x, y) where d = 0 we have
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ab x ac
ged (ab, ac)
_ abxac
B ‘a‘ ged (b, c)
db x ac . bxc

[ab, ac} —

By hint]

Because a 15 positive ¢ ged <b, c) ged (b, c)

SO a‘:a
Applying the above Proposition (2.22) again:

[b, C}: bxc

gcd(b, c)
bxc

—ng (b, c) gives

Substituting this {b, c} = _bxe into [ab, ac} =aX

ged (b, c)

[ab, ac}:ax&:ax{b, c]

ged (b, c)

This is our required result so it completes our proof.

. We are asked to prove [ P, q} = p X q where p=q and are primes.

Proof.

By result of question 4 of Exercises 2a we have

p and ¢ be distinct primes then ged ( P, q) =1
Since ged (p, q) =1 so applying Proposition (2.20):
Let a and b be relatively prime positive integers then [a, b} =axb.

To {p, q] gives [p, q}:pxq.

This completes our proof.

. We need to prove [a, ma} =ma.

Proof.
First note that ged (a, ma) = a. Using Proposition (2.22):

TXY

= y]zm

We have
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a X ma maz

[a, ma}: = =ma [Cancelling]

gcd(a, ma) y 4

This completes our proof.

We are asked to prove [a, bC] =axbXc given that a, b and a, c are relatively

prime.
Proof.

Using the given hint we have
ged (a, bc) =1
Applying Proposition (2.20):

Let z and y be relatively prime positive integers then [:1;, y} =xXy.

To [a, bc} gives [a, bc} = a X bx c. This completes our proof.

To disprove something we need to produce a counter example.
(a) To disprove [p, p] = p* welet p =3 then

[3, 3]:3 not 32.
(b) We are asked to disprove [a, b} =axb.Let a =6 and b =9 then

[6, 9] =18 =6x9 [Not Equal
(c) We need to disprove the following statement;
If [a, b}:n and [b, c]: m then [a, c} =mxn.
Let a=6, b=8 and ¢=9 then
[6, 8] — 24 and [8, 9] —72

However [6, 9| =18 and 18 = 24x72 [Not Equall.
(d) We have to disprove [a +0, C] = [a, c} —|—{b, c],
Let a=6, b=8 and ¢ =9 then

[6+8, 9}:[14, 9}:126
[6, 9}4—[8, 9}:18+72:90

Since 90 = 126 so the following statement
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a+b o =la, o]+ cfis fatse
(e) We are asked to disprove [ab, ac] — [b, c].
Let =6, b=8 and c=9 then
[ab, ac] - [6 %8, 6x 9] - [48, 54] — 432
a2><[b, c]:62><[8, 9]:36x72:2592
Actually by the result of question 7 we have [ab, ac} — a{b, c} provided a is
positive.
(f) We need to disprove gcd(a, b, c) x [a, b, c] —axbxec.
Let a=6, b=8 and c¢=09 then
gcd (6, 8, 9) —1 and [6, 8, 9] — 72
We have
ged(6, 8, 9)x[6, 8 9|=1x72=72
But 6 x8 x9 = 432. Hence
ged(a, b, c|x|a, b ¢|=axbxec [Not Equall
Note that this result holds for two positive integers; gcd(a, b) x [a, b} —axb

but is false for three positive integers a, b and c. (See result of question 22.)

Required to prove that the LCM of two positive integers is unique.
Proof.
Let a, b be positive integers whose LCM is given by

[a, b} =c
Suppose [a, b} =d where d = c.
If d>c then [a, b} cannot equal d. Why not?
Because by Definition (2.18) part (ii):
Let [a, b} = m. Then m satisfies
(ii) if both a‘ n and b ‘ n then m <n - least multiple.

The smallest multiple is c¢in this case as ¢ <d.

If d <c then [a, b} cannot equal ¢ because of the above definition, we have a

smaller common multiple d.
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In either case where d >c or d <c¢ we have a contradiction, so d = ¢ which

implies that [a, b} is unique.

For this question we could use Proposition (2.23):

[al, Qyy Gy e, an} = Hal, Qyy Gy e, anfl], an}
Or the prime decomposition which is generally easier for our given smaller
numbers.
(a) We need to find [2, 3, b, 7]. In this case as all the numbers are distinct
primes so they are relatively prime to each other (pairwise prime) which means
we can use the following;:
[2, 3, 5, 7}:2><3><5><7:210

(b) This time we use the prime decomposition method:
We need to find [24, 35, 51, 64]. Writing the prime decompositions of each
number gives

24 =2"%3,35=5x7,51=3x17 and 64 = 2°
We have
24, 35, 51, 64]=[2x3, 5x7, 3x17, 2|

211121)((3, 0, 0, 6) Xgmax(l, 0, 1, U) X5m:—1.x(0, 1, 0, 0) X7ma.x(0, 1, 0 0) max((). 0, 1, 0

x 17
=2%x3' x5 x 7' x17' =114 240
Hence [24, 35, 51, 64] — 114 240 .

(c) We are asked to find [11, 121, 132, 99, 77|.

Writing the prime decompositions of each of these numbers;
11=11, 121 =11% 132=12x11=2*x3x11, 99 =3*x11 and 77 =7x11
Therefore we have
[11, 121, 132, 99, 77] - [11, 112, 22x3x11, 32x11, 7xl11
=2 x 3" x7x11* = 30 492

Hence [11, 121, 132, 99, 77}:30 492 .

In this case we need to find the LCM of 6, 8 and 11:
6, 8 11]= H6, 8], 11}
= [24, 11] — 24 %11 = 264
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Since we are given that the number of soldiers in the battalion is between 500
and 600 and the remainder is 3 so

Number of soldiers = (2 X 264) 4+ 3 =531.

We are asked to prove the following;:
Let a, a,, a,, -, a, be pairwise relatively prime integers then
Ay Gy, gy Q| =0 XA, X Xa

How do we prove this?

By mathematical induction.
Proof.

Base case n = 2:

By Proposition (2.20):
Let a and b be relatively prime integers then [a, b} =axb.
We have our result for n = 2; that is
[al, aQ} =a, Xa,
Assume the result is true for n = k:
[al, a,, a3,~--,ak}:alxa2><---><ak (*)

Required to prove that

[al, Qyy gy ooy Gy Q| =G XA, XX a, Xa,
By applying Proposition (2.23):
[av Ay Qgy wooy an:| = Hav Ay Qgy moty anq}’ an:|
To the above [al, Qyy Qyy ooy 0y G | gIVES
[av Ay Ggs ooy Gy Qg | = [al, a,, ag,---,ak}, Q41

a

:{GIX%X---X%, k1

By (¥)]
We are given that the a integers are pairwise relatively prime which implies we

have
gcd(al, akH) = gcd(aZ, akH) == gcd(ak, akH) =1
Using the given hint:
If gcd(al, b) == gcd(a", b) =1 then gcd(a1 Xa,x-Xa, b) =1.

And by the above Proposition (2.20) on the above derivation gives
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a

Oy, @ B Yk

k? k+1

:[(11><CL2><"'X(Z

=0 XAy XXy Xa, .,

By mathematical induction we have our required result.

16. We are asked to prove the following:
Let a = p" xp,* xp,* x---xp" and b = plf1 X pg‘fl X p3f3 X +ee X pkfk be the prime
decompositions of a and b and e, >0 and f] > 0. Then the LCM is given by

[a,, b] _ plmax(e],f]) % pQIllaX(€27 fz) % p3max(63, fs) N pkmax(ew fA)

Proof.

Let the prime decompositions of a and b be given by
a=p"xp*xp®x--xp” and b= plf1 ><pi2 ><p3f3 ><-~-><pkfk

Let [a, b} = m . Required to prove that

max(ek, ﬁ)

m — plm‘a.x(el. fl) % p;nax(ez, f,_)) ” pgmax(ey fg) X e X )

Since m is a multiple of both integers a and b so it must have all these primes
and no others (least multiple):

o 3 J:
m=p~ XPp,” Xp,~* XX p,

Why?
Because if a prime p_ is missing from m then m cannot be a multiple of both
given integers a and b. This implies that m cannot be the LCM of a and b.

To complete the proof we need to show that the indices
g = max(el, j;), Jy = max(eQ, f2), ey g = max(ek, fk)
Let us consider the first index, max(el, fl)

We consider two cases; j, > max (el, f1> and then j < max (el, f1> In each case
we derive a contradiction.

Case 1:

If j, > max (61, fl) (J, is greater than e or f ) then let

IIlH.X(Kk s fk>

max(er fz) % » IIlaX((ig., fg) N P

— ph
=P XD, 3 k

Our a is given by the prime decomposition:

a=p" xp,*xp” x---xp* which implies a | n

Similarly, we have b | n. Therefore n is a common multiple of a and b.
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Also

max(ek, fk)

max(eQ. f2) 5 psmax(eg, f3) e pk
j 7max(e , )+max(e s f) max(e, ) ) max(e‘ iy )
11 1 1 lxp2 zzx , ssxu_xpk

o plyl—max(el, fl) X plmax(ev fl) 5 meax(ez,f.z) % pglnax(eg, fz) Y pkmax(ek,fk)] (*>

n=p"xp,
max(ek, j,\)

Let

max(ek, fk)

Inax(el, fl) v p IIla.X(F,Q,fZ) » p Inax(ey fg) N, p

I __
m_pl 2 3 k

Then m is also a common multiple of a and b because
a=p"xp*xp®x--xp™ and b= plf1 ><pi2 ><p3f3 ><-~-><pkfk
Substituting this into (*) gives

j,—maxle, f . . .
n=p" " o 4) m’ which implies n > m’

By the definition of the LCM we conclude that n cannot be the least common
multiple of a and b. Why not?

Because the least common multiple n > common multiple n7.
Hence with j > max (el, f1> we have [a, b} = n where

Ina.x(ek, fk)

InaX(€2~, fz) % p ma.x(eg-, fr“) X ooee X

n=p’ xp, ) D,

Case 2:

If j, <max (el, f1) (J, is less than e or f ) and without loss of generality

assume max(el, f1> = e,. From this we have j < max (el, fl) =e or j <e. Let

Ina.x(ek, fk)

InaX(€2~, fz) % p ma.x(eg-, fr“) X oee X

— ph
=P XD, 3 k

Then n is not a multiple of a. Why not?

Suppose n is a multiple of a or a is divisor of n, that is a ‘ n.
We are given that a = p* xp,* xp,% x---xp* so p ‘ a and

3 : ] ax|(e,, J, ax(e,, f.
a‘ n implies p " ‘ p % p2m (e ) X oo X pk““ (e k)]

Remember these are all distinct primes so

e max|e,, f, e
gcd[pll, P, o 4) =---=gcd[p1, p,

max(ek,fk)] _ 1

Then by the result of question 24 of Supplementary Problems 1:
If a| (b xb,x-xb,) and ged(a, b)=ged(a, b

2

| = =ged(a, b, )=1 then

b .

n

a

Applying this to
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€.

D'

g

P XD, X, gives p° ‘ 2

This 10161 ‘ plj1 cannot be right because we are supposing j <e or e > j .

Hence our supposition j, < max (817 f1) must be wrong.
Combining both cases together we have

v max(el, f1) and j, X max(el, fl)

Therefore j = max(el, f1) . Similarly we have
Jy = max(ez, fQ), Jy = max(e3, f3>, e g = max(ek, fk>

Hence m — plmax(er, fl) ” p;nax(cQ,fz) % p3max(63, fg) X e X pkmax(ek,fk) Where [a, b} —m.

We are asked to prove the following:
_ € € ) & _ h b 5 i
Let a=p* xp,” xp,* X---xp* and b= p™* xp,> xp,* X--xp " be the
prime decompositions of a and b and e >0 and f7 > 0. Then the ged is given
by
gcd (a’ b) _ plmin(e],f]) % D min(ez,fz) % D min(e:j.j;}) e P min(ek,fk)

2 3 k

Proof.
Let gcd(a, b) = d. Then d must be a product of the given primes:
d= pljl X pzj2 X psj3 X eee X pkj" (some j’s may be zero)
The number d cannot have other primes because then d would not be a divisor

of both a and b.
We need to prove that

g = min(el, j;), J, = min(eQ, j;), ey = min(ek, fk)
We prove j, = min(el, f1) then the others follow a very similar argument.
We consider two cases; j, > min (617 f1> and j, < min (el, j;) Then derive a

contradiction in both cases.

Case 1:
Suppose j, > min (el, f1) Without loss of generality assume min (61, f1) =e
so j, > min(el, f1> =e or j >e.

Consider
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g _ pljl % p;nin(c27 fz) % Zy?)min(c37 f,J S en X pkmin(ekﬁ f,\) )

From this we have plj1 g because pljl is a factor of g.

Then g/a. Why not?

a. We are given that

Suppose g‘ a and we already have plj1 g so plj1
a — plﬁl >< p2€2 X p3f13 X . >< pk(ik

Therefore from p” | a we have

i
by

(pfl X Pt X Pt XX p )
All these primes p’s are distinct so
gcd(pfl, pﬁ) = gcd(plj% pﬁ) == gad (pf, p,fk) =1
By the result of question 24 of the Supplementary Problems 1:
If a| (b xb,x-xb,) and ged(a, b)=ged(a, b,)=-=ged(a, b_]=1

then a‘ b .

Applying this result to

pljl (ple1 X p;«z Xps83 X '”kaek) gives pljl p;l

This pljl ‘ plE’1 is impossible because from our supposition we have j >e,.
Hence j, »* min (el, j;)

Case II:

Suppose j, < min (el, f1) Consider

IIllIl(EQ. fQ) 111111(63, fg) Inln(ek, fk)

g=p"xp, T xp T xexp,
Then g is a common divisor of a and b. However
g = gcd(a, b)

Why not?
Suppose g = gcd(a, b). Let us define d by

nun(el, fl) IIllIl((jZ, fz) 111111(63. f;)

d _ pl % pQ % pg VTR Inin(ck,fk) )

k

Therefore, d is also a common divisor of a and b. By Definition (1.4) (ii):
The positive integer g is the ged of integers a and b <

(i) ¢ ‘ a and ¢ ‘ b then ¢ <g. [gis the largest of the common divisors]

We have d < g. This is impossible because
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min(e2  h ) min(ek s 1 )

g _ pljl ” p2 S s X pk and d _ plmin(el,fl> % p min(ez‘ fz) Y Inin(ek, ]i)

2 k

And in our supposition we have j < min (el, j;) so g <d.
Hence g = gcd(a, b). Therefore j, £ min (el, fl)
Putting both of these cases together j > min (617 f1> and j £ min (617 f1> we
must have j = min(el, f1)
Similarly we can show that
7 :min(eQ, j;), Js :min<e3, f3>, ey :min<ek, fk)

This completes our proof.

We are asked to prove:

If [a, b} =m and n is a common multiple of ¢ and b then m | n.
Suppose m ¥ n . By the division algorithm we have unique integers ¢ and rsuch

n =mq+r where 0 <r<m (*)

We are given that n is a common multiple of a and bso a| n and mis a

common multiple of a and b so a | m. Therefore there are integers  and z’
such that
ax =n and ar’ =m
Substituting these into (*) yields
ax:a:c'q+7’ = a(x—x'q)zr = a‘ T.
Since both m and n are common multiples of b so similarly we can show that
b‘ r
From both of these a ‘ r and b ‘ r we conclude that ris a common multiple of
a and b. From (*) we have 0 < r < m. This is a contradiction. Why?
Because we are given [a, b} = m and by the definition of least common

multiple we must have the common multiple r satisfying r > m because m is

the least common multiple.

Our supposition m y n must be wrong so m | n.
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This completes our proof.

We are asked to prove the following:

Let a, a,, a,, -, a be positive integers then
[av Ayy gy = an:| = Hav Ayy gy = anq}’ an:|
Proof.
Let |a, a,, a -, an] = [ and Hal, Qyy Gy, oo, an_l}, a”} = m . Required to

prove that [ = m . How?

We show that m <[ and then show [ <m. Of course this can only imply
[=m.

Case I: Showing m <1.

Since |a

b Gy gyt an] =1 so [ is a common multiple of all the a’s;

l

a |l, a

1 a

, a,|l,---anda |1

2

Therefore, [ is a common multiple of a, a,, a,,---,a . So lis a common

27 37.

multiple of

[al’ Gys Qgy“y a’n—l}'

Since [ is a common multiple of all the a’s so it is a multiple of a . Hence it is
a common multiple of [al, Ay, gy an_l} and a_ so by the definition of the
least common multiple (2.28) part (ii):

Let m be the LCM of a and b, that is [a, b} = m. Then m satisfies

(ii) if both a ‘ [ and b‘ [ then m <[ - least multiple

a

We have m <[ because m = Hal,

29 ai%’”"anflL an}'
Case II: Showing [ <m.

Now going the other way m is a common multiple of

[al, Ay, Ay, oy an_l] and a .

/
5 a ]:m

0/3, T Y

Let |a,, a,,

Therefore n? is a common multiple of only these a’s;

!/
m, a

/
m, a

!/
a m’,---and a
1 n—

2 m' (*)

3 1
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Qo am}’ a |=m we have the common multiple m satisfying

m"mandan‘m

From (*) and this m’ | m we have

a |m, a|m, a | m,---anda_ |m

1

Since we have a ‘ m so m is also a common multiple of all the a’s.

Again, by the above definition (2.28) part (ii) we have [ <m.
Therefore we have m = [ because we have shown m <[ and [ <m.

This completes our proof.

20. We are asked to prove [n, n 4+ 1} =n X <n + 1).
Proof.
First ged (n, n + 1) =1. Why?

Because we have already shown that the ged of two consecutive integers is 1.
(See question 6(b) of Exercises 2.1.)
Now applying Proposition (2.21):

Let a and b be relatively prime positive integers then [a, b] =axb.
To a=n and b=n+1 gives
[n, n+1}:nx<n—l—1)

This completes our proof.

21. We are asked to prove that gcd(a, b) = ged (a + b, {a, bD
Proof.
Let g = gcd(a, b). Then there are integers x and y such that
gr=a and gy =b (*)
Substituting this into gcd(a + b, [a, bD gives
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gcd(a + b, [a, bD = gcd(g:v + gy, {grc, gy])

By result of question 7;
= gcd(g(x + y), g[a:, yD

[g:c, g@/l = g[x, y}
By Proposition (1.11);

—gxged(z+y [5 9 ged(ab, ac) =|a|ged(b, ¢

The gcd(m, y) =1. Why?

Because by Proposition (1.5):

If gcd(a, b) = g then gcd[g, 2] =1
9 9

From (*) we have

b
z=2 and y = — so by Proposition (1.5) ged (z, y) =1
g g

Since gcd(m, y) =1 so z and y are relatively prime which implies [x, y] =uzy.
Substituting this [LE, y] = zy into the above derivation gives
ged (a + 0, [a, bD = g x ged (x + v, [x, yD =g X gcd(m + v, xy) (1)
Applying the given hint:
If gcd(z, y) =1 then gcd (IE + v, xy) =1.
To (1) gives
gcd(a—i—b, [a, b]):gxl: g
Note that g = gcd(a, b) SO
gcd(a + b, [a, b]) =g= gcd(a, b)

This completes our proof.

We are asked to prove gecd (a, b, c) X {ab, ac, bc] =axbxc.
Proof.
Using the given hint gcd(a, b, c) = gcd (gcd(a, b), c) and Proposition
(2.23):
[av Aoy Qg =" an} - Hal’ Aoy Qg = an—1]7 an}

We have
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gcd(a, b, c)x[ab, ac, bc}:gcd(gcd(a, b), c)x ab, [ac, bc”

:gcd(gcd<a, b), c)x ab, c[a, b}
ByreWTn?;

Imy, xz|=aX|y, 2

]

Applying Proposition (2.22):
ged (3:, y) X {x, y} =2y

To ab gives gcd(a, b) X [a, b} = ab . Putting this into the above derivation:

ged(a, b, c)x[ab, ac, bc]zgcd(gcd(a, b), c)x[ab, cfa. b”
:ged(gcd(a, b), c)x[gcd(a, b)x[a. ], ca b
— 7[a, b]x(gcd(gcd(a, b). c)x[gcd(a, b). cD

by result of question
[a, b

| (gcd (a, b) c)

By (2.22 1z, 1 . y|=a
) el bl s

ab
gedla;y” b

x gedla;7” b] xc

-
By Proposition (2.22)
= abc

This is our required result so it completes our proof.



