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Complete Solutions to Exercises 7.5 

1. (a) The eigenvalues and eigenvectors of matrix TA A are

1 1

1
1,

0


 
   

 
v and  2 2

0
4,

1


 
   

 
v

The singular values of matrix A are 1 21 1  and  4 2     . Using 
1 1 1 u Av and 

2 2 2 u Av we have 

1

1 0 1 1

0 2 0 0

    
     
    

u  and 2

1 0 0 0
2

0 2 1 2

    
     
    

u

Hence from this last result 2

0
2

2

 
  
 

u we have 2

0 01

2 12

   
    

   
u . 

We have  1 2

1 0

0 1

 
   

 
U u u , 1

2

0 1 0

0 0 2





   
    

  
D  and  1 2

1 0

0 1

 
   

 
V v v . 

Note that  U V I . The triple factorization of the given matrix A is 
T  A UDV IDI D

(b) The eigenvalues and normalized eigenvectors of matrix TA A are

1 1

11
81,

25


 
   

 
v  and  2 2

21
1,

15


 
   

 
v

The singular values of matrix A are 1 281 9  and  1    . Using 
1 1 1 u Av and 

2 2 2 u Av we have 

1

1 4 1 91 1
9

4 7 2 185 5

    
     

    
u  and 2

1 4 2 21 1

4 7 1 15 5

    
     

    
u

We have 1

9 11 1

18 29 5 5

   
    

   
u . Substituting this and 

2u gives

 1 2

1 21

2 15

 
   

 
U u u , 1

2

0 9 0

0 0 1





   
    

  
D  and 

 1 2

1 2 1 21 1

2 1 2 15 5

T

TT
   

     
   

V v v .  

You may like to check the factorization TA UDV . 

(c) The eigenvalues and normalized eigenvectors of matrix TA A are

1 1

11
6,

25


 
   

 
v  and  2 2

21
1,

15


 
   

 
v

The singular values of matrix A are 1 26 and 1   .  

Using 1 1

1

1


u Av  and 2 2

2

1


u Av we have 
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1 1

1 0 1
11 1 1

0 1 2
26 5 30

1 2 5

   
    

      
    

  

u Av  and 2 2

1 0 2
21 1

0 1 1
15 5

1 2 0

   
    

      
    

  

u Av  

Since A is a 3 by 2 matrix so U is a 3 by 3 matrix which means we need to find the vector 

3u  which is orthogonal to both 
1u  and 

2u : 

3

1
1 2 5 0

1, 2, 1 2
2 1 0 0

1

x

y x y z

z

   
      

                      

u  

Normalizing the vector 
3u  gives 

3

1
1

2
6

1

 
 

  
  

u  

We have 1

1
1

2
30

5

 
 


 
 
 

u ,  2

2
1

1
5

0

 
 


 
 
 

u  and 3

1
1

2
6

1

 
 

  
  

u . 

Substituting these and the above into U, D and V gives: 

 1 2 3

1/ 30 2 / 5 1/ 6

2 / 30 1/ 5 2 / 6

5 / 30 0 1/ 6

 
 

   
 
 
 

U u u u ,  
1

2

6 00

0 10

0 00 0





  
  

    
   
   

D  and  

 1 2

1 2 1 21 1

2 1 2 15 5

T

TT
   

     
   

V v v  

You may like to check the factorization TA UDV . 

 

(d) The product 

1 0 1

0 1 2

1 2 5

T

 
 

  
 
 

A A . The eigenvalues and normalized eigenvectors of 

matrix TA A  are  

1 1

1
1

6, 2
30

5



 
 

 
 
 
 

v ,  2 2

2
1

1, 1
5

0



 
 

 
 
 
 

v  and 3 3

1
1

0, 2
6

1



 
 

 
 
  

v  

The singular values of matrix A are 1 26 and 1   .  

Using 1 1

1

1


u Av  and 2 2

2

1


u Av  we have  
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1 1

1
1 0 1 61 1 1 1

2
0 1 2 126 6 30 180

5

 
    

      
    

 

u Av  and 

2 2

2
1 0 1 21 1 1

1
0 1 2 11 5 5

0

 
    

      
    

 

u Av  

Since A is a 2 by 3 matrix so U is a 2 by 2 matrix, D is a 2 by 3 matrix and V is a 3 by 3 

matrix: 

Substituting these and the above into U, D and V gives: 

 1 2

6 / 180 2 / 5

12 / 180 1/ 5

 
   

 
 

U u u ,  
1

2

0 0 6 0 0

0 0 0 1 0





  
    
   

D  and  

 1 2 3

1/ 30 2 / 5 1/ 6

2 / 30 1/ 5 2 / 6

5 / 30 0 1/ 6

 
 

   
 
 
 

V v v v  

You may like to check the factorization TA UDV  by first transposing matrix V.  

 

(e) The product 
1 3 1 1 10 10

1 3 3 3 10 10

T     
     
    

A A . The eigenvalues and normalized 

eigenvectors of matrix TA A  are  

1 1

11
20,

12


 
   

 
v   and  2 2

11
0,

12


 
   

 
v   

The positive singular value of matrix A is 1 20  .  

Using 1 1

1

1


u Av  we have  

1 1

1 1 11 1 1

3 3 120 20 2

2 11 1
Because 40 4 10 2 10

6 340 10

   
     

   

   
          

   

u Av

  

Since A is a 2 by 2 matrix so U is a 2 by 2 matrix. What is 
2u  equal to? 

2u  needs to be orthogonal to 
1u  which means 

2 1 0 u u  therefore by inspection and 

normalizing we have  

2

31

110

 
  

 
u      

Substituting these and the above into U, D and V gives: 

 1 2

1 31

3 110

 
   

 
U u u ,  

1 0 20 0

0 0 0 0

   
    
   

D  and  

 1 2

1 1 1 11 1

1 1 1 12 2

T

TT    
     

    
V v v  
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You may like to check the factorization TA UDV . 

(f) The product

10 10 101 3
1 1 1

10 10 101 3
3 3 3

10 10 101 3

T

  
    

     
    

   

A A . The eigenvalues and normalized 

eigenvectors of matrix TA A are

1 1

1
1

30, 1
3

1



 
 

 
 
 
 

v , 2 2

1
1

0, 1
2

0



 
 

   
 
 

v   and 3 3

1
1

0, 1
6

2



 
 

 
 
  

v

The positive singular value of matrix A is 1 30  .  

Using 1 1

1

1


u Av we have 

1 1

1
1 1 11 1 1

1
3 3 320 30 3

1

3 11 1
Because 90 9 10 3 10

9 390 10

 
   

     
   

 

   
          

   

u Av

Since A is a 2 by 3 matrix so U is a 2 by 2 matrix, D is a 2 by 3 matrix and V is a 3 by 3 

matrix. What is 
2u  equal to? 

2u needs to be orthogonal to
1u . We need

2 1 0 u u

As in part (e) we have 2

31

110

 
  

 
u .  We have

 1 2

1 31

3 110

 
   

 
U u u ,  

30 0 0

0 0 0

 
  
 

D    and   

 1 2 3

1/ 3 1/ 2 1/ 6 1/ 3 1/ 3 1/ 3

1/ 3 1/ 2 1/ 6 1/ 2 1/ 2 0

1/ 3 0 2 / 6 1/ 6 1/ 6 2 / 6

T

TT

   
   

       
   
    
   

V v v v

You may like to check the factorization TA UDV . 

2. We need to prove that:

 Let A be any matrix. Then the eigenvalues of TA A are positive or zero.

Proof. 

Let 
1 2, , , n   be the eigenvalues of TA A with eigenvectors 

1 2, , , nv v v

respectively. For an arbitrary eigenvector jv we have 

T

j j jA Av v (*) 

By Proposition (7-23): 

(7-23). Let A be any matrix. Then TA A is a symmetric matrix. 
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This means that TA A can be orthogonally diagonalized so the eigenvectors are 

orthonormal.  

Consider the norm square 
2

jAv : 

 

   

2

by (*)

Because 1

T

j j j j j

T T

j j

T

j j j j j j j j j j  

  



       
 

Av Av Av Av Av

v A Av

v v v v v v v

We have 
2

0j j  Av . Hence all the eigenvalues of TA A are positive or zero.

■ 

3. Required to prove:

Let matrix A  have k positive singular values. Then the rank of matrix A is k. 

Proof. 

Let A be a m by n matrix. By SVD: 

(7-22). We can decompose any given matrix A of size m by n with singular values 

1 2 0k      where k m , into T
UDV , that is 

TA UDV

where U is a m by m orthogonal matrix, D is a m by n matrix and V is an n by n orthogonal 

matrix.  

We have TA UDV where U and V are orthogonal matrices. Since U is orthogonal so it is 

invertible because 1 T U U and similarly V is orthogonal so  1 T V V . Hence 

   
1 1

1T
 

 V V V which means that T
V is invertible. By hint we have: 

   

   

T

T

rank rank

rank rank k



  

A UDV

DV D

This completes our proof. 

■ 

4. (a) We need to prove that  1 2, , , ku u u form an orthonormal basis for the column 

space of matrix A. 

Proof. 

U is a m by m orthogonal matrix so the column vectors of matrix U are orthonormal: 

 1 2 nU u u u

By result of question 3 we have the rank of matrix A is k. 

By Proposition (3-18) of chapter 3: 

  Row rarank A (3-18). of A Column rank of Ank

Hence the dimension of the column space is k which means we need k basis vectors for the 

column space of matrix A.  

We are given that 
1 2, , , k   are positive and from the main theorem of the section 

(7-22) for 1, 2, 3, ,j k we have 

1
j j

j
u Av
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By Proposition (3-24): 

Ax b (3-24). The linear system  has a solution  b can be generated by the column 

space of matrix A. 

Therefore ju is in the column space of matrix A. We have k orthonormal vectors

 1 2, , , ku u u which are in the column space of matrix A. Since orthogonal vectors are 

linearly independent so they  1 2, , , ku u u form an orthonormal basis for the column 

space of matrix A.  

■ 

(b) We need to prove that  1 2, , , kv v v form an orthonormal basis for the row space of 

matrix A. 

Proof. 

Since V is an n by n orthogonal matrix whose columns are the eigenvectors of TA A : 

 1 2 nV v v v

These eigenvectors are an orthonormal set of vectors because V is orthogonal.   

By result of question 3 we have the rank of matrix A is k. By Definition (3-12) of chapter 3: 

(3-12). The rank of a matrix A is the row rank of A. 

Hence the dimension of the row space is k which means we need k basis vectors for the row 

space. A subset of k vectors in the above,  1 2, , , kS  v v v , is also orthonormal. As 

these vectors are orthogonal so they are linearly independent which means they form a 

basis. Therefore S forms an orthonormal basis for the row space of matrix A. 

■ 

(c) Required to prove:

The set of vectors  1 2, , ,k k n v v v form an orthonormal basis for the null space of 

matrix A.  

Proof.  

By Theorem (3-22): 

(3-22). If A is a matrix with n columns (number of unknowns) then 

   nullity rank n A A

We have the dimension of null space is n k  and there are n k  vectors in the set

 1 2, , ,k k n v v v . Remember this set  1 2, , ,k k n v v v represent the orthonormal 

eigenvectors of TA A  which correspond to the zero eigenvalues 
1 2 0k k k       .

This means that for 1, 2, ,j k k k n    we have 

  0T

j j j j  A A v v v O

These vectors  1 2, , ,k k n v v v form an orthonormal basis for the null space of TA A .  

The null space of TA A and A are identical. Hence  1 2, , ,k k n v v v form an 

orthonormal basis for the null space of matrix A. 

■ 

5. Proof.

The eigenvalues of TA A are unique. Why? 

By Question 9 of Exercises 7.2: 



Complete Solutions to Exercises 7.5    7 
 

Let A be a square matrix and   be an eigenvalue with the corresponding eigenvector u. The 

eigenvalue   is unique for the eigenvector u.  

The singular values are given by the positive roots: 

1 1 2 2, , , n n         

Therefore the singular values are unique. 

■ 

 

6. We need to prove that the column vectors of matrix U in TA UDV  are the 

eigenvectors of TAA . 

Proof.  

Using the singular value decomposition TA UDV  we have 

  

    

 

   

By using 

Because  

' where '   is a diagonal matrix

T
T T T

T TT T T T T T T

T
T T T T

T T T T





  
 

  
  

  

I

AA UDV UDV

UDV V D U XYZ Z Y X

UDV V D U X X

U DD U U D U D DD

 

Remember U is an orthogonal matrix so it inverse is given by T
U . Left-multiplying the 

above result  'T TAA U D U  by T
U  and right-multiplying by U gives 

   ' 'T T T T

 

 
I I

U AA U U U D U U D  

Since   'T T U AA U D , the matrix U diagonalizes TAA  and the columns of U are the 

eigenvectors of TAA . This completes our proof. 

■ 

 

7. Required to prove that: 

The singular values of A and T
A  are identical.  

Proof. 

The singular values of a matrix A are given by the square roots of the eigenvalues 

1 2, , , n    of TAA   

1 1 2 2, , , n n         

The singular values of a matrix T
A  are given by the square roots of the eigenvalues 

1 2, , , nt t t  of  
T

TAA  .  

By Question 16 of Exercises 7.2: 

The eigenvalues of the transposed matrix, T
A , are exactly the eigenvalues of the matrix A.  

Hence  
T

TAA  will have the same eigenvalues as TAA  which means: 

1 1 2 2, , , n nt t t      

Therefore the singular values of T
A  are the same. Hence the singular values of both A and 

the transposed matrix T
A  are identical. 

■ 

 

8. (a) We have to prove that: 



Complete Solutions to Exercises 7.5    8 

The set of vectors  1 2, , , ku u u form an orthonormal basis for the range of T. 

Proof. 

Let  1 2, , , ku u u be the first k column vectors of matrix U. By Proposition (7-26) 

part(a): 

 1 2, , , ku u u is an orthonormal basis for the column space (7-26) (a) The set of vectors 

of matrix A.  

 T x AxAlso we are given that  so by Proposition (5-6) of chapter 5:

(5-6). Let : n mT  be a linear transformation given by  T x Ax . Then

 range T is the column space of A. 

So the range of the transformation T is the column space of matrix A therefore 

 1 2, , , ku u u is an orthonormal basis for the range.

■ 

(b) Required to prove that:

The set of vectors  1 2, , ,k k n v v v form an orthonormal basis for the kernel of T. 

Proof. 

Remember the kernel of a transformation T are the vectors in the start vector space which 

 T x Ax

 T  x Ax O

are mapped to the zero vector. In our case we have  so it is the vectors x which 

satisfy . Of course this is the null space of matrix A. By Proposition (7-26):

 1 2, , ,k k n v v v form an orthonormal basis for the null (7-26) (c) The set of vectors 

space of matrix A.  

Hence  1 2, , ,k k n v v v is an orthonormal basis for kernel of T. 

■




