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Complete Solutions to Exercises 3.2
1. Checking all 10 axioms gives

1.The vector addition  O O O is also in the vector space S.
2.Commutative law:   O O O O .
3.Associative law:        O O O O O O .

4.Neutral Element. Clearly O is in S.
5.Additive Inverse. For every vector O there is a vector O which satisfies the

following:
  O O O

6.Let k be a scalar then kO is also in S.
7.Associative Law for scalar multiplication. Let k and c be real numbers then

   k c kcO O

8.Distributive Law for vectors. Let k be a real number then

 k k k  O O O O

9.Distributive Law for scalars. Let k and c be real numbers then

 k c k c  O O O

10. Identity Element. For every vector in S we have

 1 O O

Since ALL 10 axioms are satisfied therefore we have S is a vector space.

Assume in the remaining questions, the set S is non-empty. Ideally you should check for 
this.
2. We need to check conditions (a) and (b) of Proposition (3-4). These are
(a) If u and v are vectors in the set S then the vector addition u v is also in S.
(b) If u is a vector in S and k is any scalar then ku is also in S.

Let
0

a 
  
 

u and
0

b 
  
 

v be vectors in S.

0 0 0

a b a b     
        

     
u v

Hence u v is in S.

Let k be a scalar and
0 0

a ka
k k

   
    
   

u . This is also in S.

Since conditions (a) and (b) of Proposition (3-4) is satisfied therefore we conclude S is a 
subspace of 2 .

3. Again we need to check conditions (a) and (b) of Proposition (3-4). These are
(a) If u and v are vectors in the set S then the vector addition u v is also in S.
(b) If u is a vector in S and k is any scalar then ku is also in S.

Let
a

a

 
  
 

u and
b

b

 
  
 

v be vectors in S.

a b a b

a b a b

     
             

u v

Hence u v is in S.
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Let k be a scalar and
a ka

k k
a ka

   
    
   

u . This is also in S.

Since conditions (a) and (b) of Proposition (3.5) is satisfied therefore we conclude S is a
subspace of 2 .

4. Again we need to check conditions (a) and (b) of Proposition (3.5). These are
(a) If u and v are vectors in the set S then the vector addition u v is also in S.
(b) If u is a vector in S and k is any scalar then ku is also in S.

Let

0

0

c

 
   
 
 

u and

0

0

d

 
   
 
 

v be vectors in S.

0 0 0

0 0 0

c d c d

     
             
          

u v

Hence u v is in S.

Let k be a scalar and

0 0

0 0k k

c kc

   
       
   
   

u . This is also in S.

Since conditions (a) and (b) of Proposition (3-4) is satisfied therefore we conclude S is a 
subspace of 3 .

5. Let

1

b

c

d

 
 
 
 
 
 

u and

1

0

0

0

 
 
 
 
 
 

v then

1 1 2

0

0

0

b b

c c

d d

     
     
        
     
     
     

u v

The first entry in the vector is 2 therefore u v is not in S, Hence S is not a subspace of
4 .

6. We can use:
Proposition (3-5). A non-empty subset S is a subspace of a vector space V if and only if
If u and v are vectors in S then any linear combination 1 2k ku v is also in S.

Clearly S is non-empty. Let

a

b

c

 
   
 
 

u with 0a b c   and

d

e

f

 
   
 
 

v with 0d e f   .

Consider

acauser3
스탬프

acauser3
스탬프
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1 2

1 2 1 2 1 2

1 2

k a k da d

k k k b k e k b k e

c f k c k f

    
            

          

u v

We have to check that the result is in S which means adding all the entries gives zero:

   
   

1 2 1 2 1 2 1 2

1 20 0 0

k a k d k b k e k c k f k a b c k d e f

k k

          

  

Hence 1 2k u  k v is also in S. By Proposition (3-5) we conclude that S is a subspace of the
vector space V.

7. Let
1

1

 
  
 

u and
1

2
k  and we carry out scalar multiplication ku we have

1 1/ 21

1 1/ 22
k

   
    
   

u

Since the entries ½ are not integers therefore ku is not a member of the set S. Hence S
is not a subspace of the vector space V.

8. We are give ,   and  c  are rational numbers

a

S b a b

c

  
     
  
  

. Let

1

2

3

 
   
 
 

u and k 

then
1

2 2

3 3

k


 



   
       
   
   

u

Since , 2   and   3   are not rational numbers so ku is not in the set S. Therefore S is

not a subspace of 3 .

9. Very similar to Example 7.

10. We are given , , ,  are all integers
a b

S a b c d
c d

      
   

. Consider the matrix A

which is
1 2

3 4

 
  
 

A and scalar k  then scalar multiplication

1 2 2

3 4 3 4
k

 


 
   

    
   

A

Clearly the entries , 2 , 3   and  4    are not integers therefore kA is not in the set S.

Hence S is not a subspace of 22M .

11. We can use:
Proposition (3-5). A nonempty subset S is a subspace of a vector space V if and only if
u and v are vectors in S then any linear combination k cu v is also in S.
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Let A and B be symmetric matrices, that is T A A and T B B .
Consider k cA B :

     T T T

T T

k c k c

k c k c

  

   

A B A B

A B A B

Since  Tk c k c  A B A B so k cA B is symmetrical which means it is in the subset

S. Hence by Proposition (3-5) we have S is a subspace of the vector space V.

12. We need to find scalars which satisfy

1 1 2 2 3 3k k k  v v v x

where 2 2
1 2 31, 1  and  2 1t t t t      v v v . Also 27 8 1t t  x . Substituting these

into the above gives

     
     

2 2
1 1 2 2 3 3 1 2 3

2
1 3 2 3 1 2 3

2

1 1 2 1

2

7 8 1

k k k k t k t k t t

k k t k k t k k k

t t

        

       

  

v v v

Equating coefficients gives

1 3

2 3

1 2 3

2 7

8

1

k k

k k

k k k

 

 

   
Writing the augmented matrix:

1

2

3

R 1 0 2 7

R 0 1 1 8

R 1 1 1 1

 
 
 
   

Carrying out the row operation

1

2
*
3 3 1

R 1 0 2 7

R 0 1 1 8

R R R 0 1 1 8

 
 
 
    

Subtracting the last two rows:

1

2
** *
3 3 2

R 1 0 2 7

R 0 1 1 8

R R R 0 0 0 0

 
 
 
    

From the middle row we have 2 3 8k k  . Let 3 1k  then 2 7k  . Also substituting

3 1k  into the top row we have

1 12 7  gives  5k k  
Since we have scalars 1 5k  , 2 7k  and 3 1k  which satisfy

     2 2
1 1 2 2 3 3

2

5 1 7 1 2 1

7 8 1

k k k t t t t

t t

        

   

v v v

x

x is a linear combination of 1 2 3,   andv v v .

13. We need to find each x as a linear combination of the given vectors
2 2

1 2 32 1, 2 1  and  5 2 3t t t t t       p p p
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(a) We have to find the scalars which satisfy

     
     

2 2
1 1 2 2 3 3 1 2 3

2
1 3 1 2 3 1 2 3

2

2 1 2 1 5 2 3

5 2 2 2 3

4 2 3

k k k k t t k t k t t

k k t k k k t k k k

t t

         

        

  

p p p

Equating coefficients gives

1 3

1 2 3

1 2 3

5 4

2 2 2 2

3 3

k k

k k k

k k k

 

   

    
Writing the augmented matrix gives

1

2

3

R 1 0 5 4

R 2 2 2 2

R 1 1 3 3

 
  
    

Executing row operations:

1
*
2 2 1
*
3 3 1

R 1 0 5 4

R R 2R 0 2 8 10

R R R 0 1 2 1

 
     
    

Carrying out row operations on the last two rows:

1
*
2

** * *
3 3 2

R 1 0 5 4

R 0 2 8 10

R 2R R 0 0 12 12

 
   
    

From the last row we have 3 1k  . Substituting this into the middle row gives

2 3

2 2

2 8 10

2 8 10  gives  1

k k

k k

  

    
Substituting 3 1k  into the first row gives

 
1 3

1 1

5 4

5 1 4    gives    1

k k

k k

 

   

Since we have found scalars, 1 2 31, 1  and 1k k k     , therefore 24 2 3t t  x is a

linear combination of 1 2 3,  andp p p . We can check this by:

     2 2 21 2 1 1 2 1 5 2 3 4 2 3t t t t t t t             x

(b) Similarly to (a) for 22 2t  x we have

     
     

2 2
1 1 2 2 3 3 1 2 3

2
1 3 1 2 3 1 2 3

2

2 1 2 1 5 2 3

5 2 2 2 3

2 2

k k k k t t k t k t t

k k t k k k t k k k

t

         

        

  

p p p

Equating coefficients gives

1 3

1 2 3

1 2 3

5 2

2 2 2 0

3 2

k k

k k k

k k k

  

  

    
Writing the augmented matrix gives
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1

2

3

R 1 0 5 2

R 2 2 2 0

R 1 1 3 2

  
 
 
    

Executing row operations:

1
*
2 2 1
*
3 3 1

R 1 0 5 2

R R 2R 0 2 8 4

R R R 0 1 2 4

  
    
    

Carrying out row operations on the last two rows:

1
*
2

** * *
3 3 2

R 1 0 5 2

R 0 2 8 4

R 2R R 0 0 12 12

  
  
    

From the last row we have 3 1k   . Substituting 3 1k   into the top row:

1 3 15 2  gives   2 5 3k k k      
Substituting 1 3k  and 3 1k   into the middle row:

   1 2 3 2 22 2 2 0  2 3 2 2 1 0   2k k k k k          

We have scalars 1 2 33, 2  and  1k k k     which satisfies

       2 2
1 1 2 2 3 3

2

3 2 1 2 2 1 1 5 2 3

2 2

k k k t t t t t

t

           

   

p p p

x

Therefore x a linear combination of 1 2 3,  andp p p .

(c) Similarly to (a) for 6x we have

     
     

2 2
1 1 2 2 3 3 1 2 3

2
1 3 1 2 3 1 2 3

2 1 2 1 5 2 3

5 2 2 2 3

6

k k k k t t k t k t t

k k t k k k t k k k

         

        



p p p

Equating coefficients gives

1 3

1 2 3

1 2 3

5 0

2 2 2 0

3 6

k k

k k k

k k k

 

  

   
Writing the augmented matrix gives

1

2

3

R 1 0 5 0

R 2 2 2 0

R 1 1 3 6

 
 
 
   

Executing row operations:

1
*
2 2 1
*
3 3 1

R 1 0 5 0

R R 2R 0 2 8 0

R R R 0 1 2 6

 
    
    

Carrying out row operations on the last two rows:
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1
*
2

** * *
3 3 2

R 1 0 5 0

R 0 2 8 0

R 2R R 0 0 12 12

 
  
    

From the last row we have 3 1k  . Substituting 3 1k  into the middle row:

2 22 8 0  gives   4k k  
Substituting 3 1k  into the top row:

1 15 0  gives  5k k   
Since we have scalars 1 2 35, 2  and  1k k k    which satisfies

     
     

2 2
1 1 2 2 3 3 1 2 3

2 2

2 1 2 1 5 2 3

5 2 1 4 2 1 5 2 3

6

k k k k t t k t k t t

t t t t t

         

        

 

p p p

x

Therefore x a linear combination of 1 2 3,  andp p p .

14. (a) Since from trigonometry we have    2 2cos sin 1t t  therefore 1 is a linear

combination of  2
1 sin tv and  2

2 cos tv with both scalars equal to 1.

(b) Similarly we have

   
   

2 2
1 2

2 2

cos sin

cos sin

k t k t

t t



  

 

 

Linear combination of  2
1 sin tv and  2

2 cos tv gives x .

(c) From our knowledge of trigonometry we have the identity

     2 2cos sin cos 2t t t 

Therefore with scalars 1 1k  and 2 1k   we have

         2 2 2 2
1 2cos sin cos sin cos 2k t k t t t t   

Hence the vector  cos 2tx is a linear combination of  2
1 sin tv and  2

2 cos tv .

15. We need to show that

1

2

0

 
   
 
 

u and

1

5

0

 
   
 
 

v span the subspace S which is set of

vectors

0

a

b

 
 
 
 
 

. Let

0

a

b

 
 
 
 
 

be an arbitrary vector and k and c be scalars.

1 1

2 5

0 0

2 5 2 5

0 0 0 0

k c k c

k c k c a

k c k c b

   
        
   
   

        
                  
       
       

u v
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We have the simultaneous equations

2 5

k c a

k c b

 
 

From the first equation we have k c a  . Substituting this into the second equation:
 2 5

2 2 5

2
7 2   gives

7

c a c b

c a c b

b a
c b a c

  

  


  

Placing
2

7

b a
c


 into the first equation k c a  yields

2

7
2 7 2 5

7 7 7 7

b a
k a

b a a b a a b
k a


 

  
    

Since we have
2

7

b a
c


 and

5

7

a b
k


 therefore we conclude that the given vectors

span S.

16. You need to find scalars 1 2 3,  andk k k which satisfy

     
     

2 2
1 1 2 2 3 3 1 2 3

2
1 2 2 3 1 2

2

 3 2 5 6 5

2 5 5 3 6

3

k k k k t k t t k t

k k t k k t k k

t

       

     

 

p p p

Equating coefficients:
 
 
 

1 2

2 3

1 2

2 1 *

5 5 0 **

3 6 3 ***

k k

k k

k k

 

 

 

From the first equation (*) we have 1 21 2k k  . Let 2 1k  then 1 1k   . From the

middle equation (**) we have 2 3k k  which means that 3 1k   .

We have scalars, 1 1k   , 2 1k  and 3 1k   :

     2 2
1 1 2 2 3 3

2

 1 3 2 5 6 1 5

3

k k k t t t t

t

         

 

p p p

Therefore the vector x belongs to span  1 2 3, ,p p p .

17. We need to solve the linear combination

1 2 3k k k  A B C D

for scalars 1 2 3,   andk k k :



Complete Solutions to Exercises 3.2 9

1 2 3 1 2 3

3 31 1 2 2

31 1 2 2

1 2 3 1 2 3

1 2 3 1 2

1 1 1 2 2 6

1 1 5 7 8 0

2 62

8 05 7

2 2 6 7 3

5 8 7 0 14 26

k k k k k k

k kk k k k

kk k k k

k k k k k k

k k k k k

     
         

     
     

       
     
       

           

A B C

Equating entries gives

1 2 3

1 2 3

1 2 3

1 2

2 7

2 6 3

5 8 14

7 0 26

k k k

k k k

k k k

k k

  

   

   

   

Solving these equations gives 1 2 3

1
2, 4  and

2
k k k    .

Therefore D belongs to span  , ,A B C .

18. (a) We need to test if 0 is in the span of  ,f g where  cos 2xf ,  sin 2xg :

   cos 2 sin 2 0 0k c k x c x k c      f g

Hence 0 is in the span of  ,f g .

(b) Similarly we have

     cos 2 sin 2 sin 2 0  and  1k c k x c x x k c      f g

Therefore  sin 2x is in the span of  ,f g .

(c) From trigonometry we have the identity      2 2cos sin cos 2x x x  therefore

   2 2cos sinx x is in the span of  ,f g .

(d) From trigonometry we have    2 2cos sin 1x x  and by part (c)

     2 2cos sin cos 2x x x 
Putting this into the linear combination:

   
         2 2 2 2

cos 2 sin 2

cos sin sin 2 cos sin

k c k x c x

k x x c x x x

  

      

f g

Equating coefficients  2cos x ,  2sin x and  sin 2x gives

1, 1, 0k k c   
This is inconsistent because we have two different values for k, that is 1, 1k k   .

Hence 1 is not in the span of  ,f g .

19. We need to see if  21  and 1x x  span 2P . Let 2ax bx c  p be a polynomial in

2P . Let 1k and 2k be scalars such that

     
   

2 2
1 2 1 1 2

2 2
2 1 2 1 2

1 1 2 1

2

k x k x k x k k x x

k x k k x k k ax bx c

       

       
Equating coefficients
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2
2

1 2

1 2

:

: 2

:

x k a

x k k b

Const k k c


 
 

From the first equation we have 2k a . Substituting this into the middle equation gives:

1 12 2k a b k b a    
Putting 1 2k b a  and 2k a into the bottom equation yields

2b a a b a c    

We are forced to have c b a  . Hence  21  and 1x x  cannot span a polynomial

2ax bx c  where c b a  . Therefore  21  and 1x x  does not span 2P .

20. We need to prove that span S is a subspace of the vector space V where S is a non -

empty subset of V.
Proof. We are given that S is non – empty so let 1 2, , , nv v v be vectors in S. By

Definition (3-3). If every vector in V can be produced by a linear combination of vectors

1 2 3, , ,   and nv v v v then these vectors span or generate the vector space V. We

write this as span 1 2 3, , , , nv v v v .

we have span 1 2 3, , , , nv v v v is a linear combination of the vectors 1 2, , , nv v v .

Since any linear combination of  1 2 3, , , , nv v v v is in span 1 2 3, , , , nv v v v so

by

Proposition (3-5). A non - empty subset S containing vectors u and v is a subspace of a 
vector space V   any linear combination ku  cv is also in S ( k and c are scalars).

We conclude that span   1 2 3, , , , n span Sv v v v is subspace of V.

■

21. Take T to be the subset of S which does not contain the zero vector. Then clearly T is
a subset of S but T is not subspace of S because it must have the zero vector in order to
be a subspace.

22. The question should say prove or disprove.
(a) Required to prove that S T is a subspace of V provided S and T are subspaces of V.
Proof.
Let vectors u and v be vectors in S T . This means that u and v is in S and T. As S and
T are subspaces of V therefore the linear combination of u and v is also in both S and T.
Hence linear combination is in S T . By

Proposition (3-5). A non - empty subset S containing vectors u and v is a subspace of a 
vector space V  any linear combination ku  cv is also in S ( k and c are scalars).

We can say that S T is a subspace of V.
■

(b) The union of subspaces is not a subspace. For example, consider the following:
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1

0
S Span

  
   

  
and

0

1
T Span

  
   

  

are subspaces of 2 . Let
1

0

 
  
 

u be in S and
0

1

 
  
 

v be in T. Then

1

1

 
   

 
u v which is not in S T

Hence S T is not a subspace.




