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Complete Solutions to Exercises 8.1 
 

1. (a) 36 is already a square number so 2 236 6 0  . 
(b) 37 is one more than 36 so 2 237 6 1  . 

(c) Again 101 is 1 more than 100 which is 210  so 2 2101 10 1  . 
(d) We have 2 2170 169 1 13 1    . 
(e) The sum of squares for 229 is harder to spot but can be done by inspection: 

2 2229 225 4 15 2         
 

2. (a) Note that 2 2 2256 16 16 0   . 
(b) Since 281 is close to 256, we find that the difference between these numbers, 

281 and 256, is 225 5 . So 2 2281 256 25 16 5    . 

(c) 512 is a power of 2; that is 92 512 . We have 

   
 

29 8 4 2 2

2 2 2 2 2

512 2 2 2 2 1 1
16 1 1 16 16

     
    

 

(d) Again 2048 is a power of 2 integer; 112 2048 . Writing this as the sum of 
two squares gives 

   211 5 2 2 2 2 22048 2 2 2 32 1 1 32 32        . 

 
3. For this question we can use the Sum of Squares Theorem (8.5): 

2
1 2 rn p p p N      can be expressed as sum of two squares provided 

every prime jp  satisfies 2jp   or  1 mod 4jp   for 1, ,j r  . 

If we want to use this theorem we need to first factorize our given integer. 
(a) Since 202 is an even number so 2 is a factor. The factorization of 202 into 
its primes is given by 

202 2 101     
Since our primes satisfy 2jp   or  1 mod 4jp   so we can write this integer 

as the sum of two squares: 

   2 2 2 2202 2 101 1 1 10 1       

How do we convert    2 2 2 21 1 10 1    into sum of two squares? 

By using the Conversion Identity (8.1): 

       2 22 2 2 2a b c d ac bd ad bc        
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Applying this to    2 2 2 21 1 10 1    gives 

       2 22 2 2 2

2 2

1 1 10 1 1 10 1 1 1 1 1 10
9 11

                               
 

 

Hence 2 2202 9 11  . 

(b) Factorizing 205 5 41  . Since  5 41 1 mod 4   so we can convert 205 

into sum of two squares: 

   
   

2 2

2 2 2 2

205 5 41
2 1 25 16
2 1 5 4

 
   
   

 

Now we need to rewrite    2 2 2 2205 2 1 5 4     as the sum of two squares. 

Using the identity (8.1) we have 

   
   

2 2 2 2

2 2

2 2

205 2 1 5 4

2 5 1 4 2 4 1 5 By (8.1)
6 13

   
                                  

 
 

(c) We need to convert 180 to sum of two squares. Factorizing 180 gives 

 
2 2

2 2

180 4 9 5
2 3 5

5 2 3 5 6

  
  

    

 

This 2180 5 6   is in the correct format, 2
1 2 rn p p p N     , of using 

the Sum of Squares Theorem. Since  1 5 1 mod 4p    so we can write 180 as 

the sum of two squares: 

 2 2 2 2 2 2180 5 6 2 1 6 12 6        

 
4. (a) We need to convert 2016 into sum of two squares. The prime factorization 

of 2016 is given by: 

2

3

4 5 5 2

2016 2 1008 2 2 504
2 2 252
2 2 126
2 2 63 2 9 7 2 3 7

    
  
  
        

 

By Corollary (8.8): 
2

1 2 rn p p p N      cannot be expressed as sum of two squares   it has a 

prime factor  3 mod 4jp  . 
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Since  7 3 mod 4  and 7 is to the index 1 so 5 22016 2 3 7    cannot be 

expressed as the sum of two squares. 
(b) The prime factorization of 2015 is given by 

2015 5 13 31    
Since  31 3 mod 4  so by the above corollary we conclude that 2015 cannot 

be expressed as the sum of two squares. 
(c) We need to convert 2017 into sum of two squares. We are informed that 

2017 is prime so we only need to test if it satisfies  1 mod 4p  : 

 2017 1 mod 4  

Hence we can write 2017 as the sum of two squares. Taking the square root of 
2017 as suggested in the hint we have 

 2017 44.911 3dp  

Taking the floor function of this  

2017 44.911 44           

Finding the difference between 2017 and 44 squared we have 
2 22017 44 81 9    

Rearranging this so that 2017 is the subject gives 
2 22017 9 44  . 

(d) This time we are required to express 2018  2 1009  as the sum of two 

squares. First we need to test whether 1009  is congruent to 1 modulo 4: 

 1009 1 mod 4 . 

Therefore we can write 2018 as the sum of two squares. Using the other part of 
the hint we have 

2 21009 28 225 15  .   
Rearranging this gives 2 21009 28 15 . Substituting this 2 21009 28 15  
into 2018 2 1009   yields 

 
   2

2

2 2 2

228
2018 2 1009

2 15
1 1 18 52

 
  
   

 

Applying the Conversion Identity (8.1): 

       2 22 2 2 2a b c d ac bd ad bc        

We have 
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2 2 2

2 2

2 2

22018 1 1 15

1 28 1 15 1 15 1 28
13 43

28   
                            

 
 

(e) We are given 2019 3 673   and as 3 is a factor of 2019 so we cannot 
express 2019 as the sum of two squares. Why not? 
Because by Corollary (8.8): 

2
1 2 rn p p p N      cannot be expressed as sum of two squares   it has a 

prime factor  3 mod 4jp  . 

We have  3 3 mod 4  so 2019 cannot be converted into sum of two squares. 

(f) The prime factorization of 2020 is given by 
22020 2 5 101     (�) 

Since the primes 5 and 101 in this factorization satisfy  

 5 101 1 mod 4  , 

so we can express 2020 as the sum of two squares: 

   2 2 2 25 101 2 1 10 1      

Using the Conversion Identity (8.1): 

       2 22 2 2 2a b c d ac bd ad bc        

We have  

   
   

2 2 2 2

2 2

2 2

5 101 2 1 10 1

2 10 1 1 2 1 1 10
19 12

    
                            

 
 

Substituting this 2 25 101 19 12    into (�) gives 

 
   

2

2 2 2

2 2 2 2

2020 2 5 101
2 19 12

2 19 2 12 38 24

  
  

     

 

Hence we can write 2020 as 2 238 24 . 
 

5. (a) We have 

     2 2 22 2 23 4 9 16 25 5n n n n n n     . 

(b) We have 



Complete Solutions 8.1       Page 5 of 22 
 

     2 22 2 2 4 2 4 2 22 1 4 2 1 2 1 1n n n n n n n n           . 

(c) Similarly, we have 

     2 22 2 2 2 2 4 2 2 4 4 2 2 4 2 22 4 2 2mn n m m n n m n m n m n m n m           . 

 

6. We are asked to prove that 2n  is sum of two squares. 
Proof. 
If n is even, say 2n m , then  

   2 22 22 2 2 2 0n m m m    . 

So we can write this as the sum of two squares. 
If n is odd, say 2 1n m   then 

         2 2 2 22 1 2 22 2 2 2 2 1 1 2 2n m m m m m      . 

Again we can express 2n  is sum of two squares. 
Since n can only be odd or even so we have completed our proof. 

■ 
 

7. We need to prove that kn  where k is an even positive integer can be written as 

sum of two squares. 

Proof. 

Since we are given that k is an even positive integer, so let 2k m . Therefore 

by using the rules of indices we have  

   2 22 20m m mn n n   . 

Hence kn  where k is an even positive integer can be expressed as the sum of 

two squares. 
■ 

 

8. We need to prove that 2k n  can be expressed as the sum of two squares 
provided n can be represented by sum of two squares. 
Proof. 
We are given that n can be expressed as the sum of two squares, so 

2 2n a b  . 
Therefore  
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     2 22 2 2 2k n k a b ka kb    . 

Hence 2k n  can be expressed as the sum of two squares. 
■ 

 
9. We are asked to prove; 

Let p  be prime such that  1 mod 4p   and k be a natural number. Then we 

can write kn p  as the sum of two squares. 

Proof. 

Since we are given the prime  1 mod 4p   so we can express this as the sum 

of two squares; 2 2p a b  . If k  is even, say 2k m  then we are done because  

   2 22 20k m m mn p p p p     .    

If k is odd, say 2 1k m   then 

    
       

2 1

2 22 2

2 2 2 22 2

k m

m m

m m m m

n p p

p p a b p

a p b p ap bp

 

  

   

 

Hence kn p  can be written as the sum of two squares. 
■ 

 

10. We are asked to prove that if  1 mod 4p   then there exists positive integers 

x and y  such that 2 2x y kp   where k p  and it is a positive integer. 
Proof. 

We assume  1 mod 4p   which implies 1  is a quadratic residue of p thus 

1 1
p

       
. From the quadratic congruence  2 2 modx y p   we know that 2y  is 

a quadratic residue of p. The product of QR with QR gives us a QR, so 2y  is 

a quadratic residue of p. Hence  2 2 modx y p   has solutions so there are 

integers x and y such that  2 2 0 modx y p  . Hence 2 2x y kp  . We also 

need to show that 0 k p  .  

If we chose 1y   then the quadratic congruence  2 1 0 modx p   which we 

can rewrite as  2 1 modx p  has solutions because we are given 
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 1 mod 4p  . By the symmetrical nature of the quadratic solutions we have 

11
2

px   . Therefore 
2

2 11
2

px
        

. Examining 

2
2

2 2

1 1 121 1 14
4 4

p p
x p p p

p p p p p p

                  

Hence 2 21x p  . So there exists positive integers x and y  such that 
2 2x y kp   where k p .  

■ 
 

11. We need to prove that any integer n >1 can be written as  
2

1 2 rn p p p N       

Proof. 
Let n >1. By the Fundamental Theorem of Arithmetic (2.5): 

Every integer n greater than 1 is either a prime or can be written uniquely as 
a product of primes apart from the order in the following manner: 

1 2 3
1 2 3

lk k k k
ln p p p p      

So by this theorem we can write any integer greater than 1 as  
1 2 3

1 2 3
lk k k k

ln p p p p      

(If n is prime then we can write this as 1n p .) 

Consider an arbitrary index jk  where 1, ,j l  . 

Now the index jk  can only be odd or even.  

Let us first take the case where jk  is odd. Let 2 1jk m   where m is an 

integer 0 . Then by using the rules of indices we have 

 22 1jk m m
j j j jp p p p    

If the index jk  is even, 2jk m  say, where 1m   is an integer, then 

 22jk m m
j j jp p p   

Writing the integer 1 2 3
1 2 3

lk k k k
ln p p p p      so that all the primes which 

have an odd index are written first. Assume there are r of these primes with an 
odd index;  

1 2, , , rp p p      

Therefore we have 
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1 2 3

11 2

1 2 3
22 1 2 1 2 1 2

1 2 1

primes with an odd index primes with an even index

1 2
using the 
rules of indices

l

rr

k k k k
l

mm m m l
r r l

r

n p p p p

p p p p p

p p p p

  


    
      

    


  

    

   
  

11 2

11 2

11 2

11 2

22 2 2 2
1 2 1

22

1 2 1 2 1
2

1 2 1 2 1
rearranging

2
1 2 1 2 1where 

rr

rr

rr

rr

mm m m l
r r l

mm m m l
r r r l

mm m m l
r r r l

mm m m l
r r r l

p p p p

p p p p p p p p

p p p p p p p p

p p p N N p p p p p

















     

          

          

           

 

  

  

  

 

Hence every positive integer n greater than 1 can be written as  
2

1 2 rn p p p N      

This completes our proof. 
■ 

 
12. We need to prove the identity: 

       2 22 2 2 2a b c d ac bd ad bc        

Proof. 
Expanding the left - hand side of the given statement gives 

   2 2 2 2 2 2 2 2 2 2 2 2a b c d a c a d b c b d        

Expanding the right - hand side yields 

     2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2

2 2ac bd ad bc a c abcd b d a d abcd b c
a c b d a d b c

        
   

 

Since both sides are equal, so the given identity holds. 
■ 

 
13. In each case we use the Conversion Identity (8.1): 

       2 22 2 2 2a b c d ac bd ad bc        

 
(a) We need to write 25  as the sum of two non-zero squares: 

   
   

2 2 2 2 2

2 2

2 2

5 5 5 2 1 2 1

2 2 1 1 2 1 1 2
3 4

     
                            

 
 

(b) Now we need to convert 172 into the sum of two non-zero squares 
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2 2 2 2 2

2 2

2 2

17 17 17 4 1 4 1

4 4 1 1 4 1 1 4 By (8.1)
15 8

     
                                  

 
 

(c) Similarly for 292 we have  

   
   

2 2 2 2 2

2 2

2 2

29 29 29 5 2 5 2

5 5 2 2 5 2 2 5 By (8.1)
21 20

     
                                  

 
 

Hence we can write 292 as 2 220 21 . 
(d) From the solution to question 3(a) we have 2 2202 9 11  : 

     
   
 

22 2 2 2 2 2 2

2 2

2 2 2 2

202 9 11 9 11 9 11

9 9 11 11 9 11 11 9 By (8.1)

40 198 40 198

     
                                  

    

 

 

14. We need to show      2 2 22 2 2 2 2a b a b ab    . 

Proof. 
Squaring 2 2a b  and using the Conversion Identity (8.1) we have 

     
   
   

22 2 2 2 2 2

2 2

2 22 2

By Identity (8.1)

2

a b a b a b

a a b b a b b a

a b ab

    
                                  

  

 

We have our required result. 
■ 

 
15. We are asked to show that  

if  gcd , 1x y   and 2 2 2x y z   then    gcd , gcd , 1x z y z  . 

Proof. 
By contradiction. 

Suppose  gcd , 1x z g   then there are integers a and b such that 

,ga x gb z  . 

 Substituting this into 2 2 2x y z   gives 

     2 22 2 2 2 2 2 2ga y gb y g a b g y g y        

We have g y  and from our supposition  gcd , 1x z g    we have   
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g x   

Hence g x  and g y  therefore  gcd , 1x y g  . This is a contradiction 

because we are given  gcd , 1x y  . Hence  gcd , 1x z   and similarly 

 gcd , 1y z  . This completes our proof. 

 ■ 
 

16. We need to find the unknowns x and y such that 2 2 178x y  . 
For this we need to write 178 as sum of two squares; 2 2x y . 
Factorizing 178 gives 178 2 89  . Since the prime 89 satisfies 

 89 1 mod 4 , 

so we can express 178 2 89   as the sum of two squares. Converting 89 into 
sum of two squares gives 

2 289 64 25 8 5    . 
Therefore 

   
   

2 2 2 2

2 2

2 2

178 2 89 1 1 8 5

1 8 1 5 1 5 1 8
3 13

     
                            

 
 

Since 2 23 13 178   so 3x   and 13y   or vice-versa. 
 

17. We are asked to express 1105 5 13 17    as the sum of two squares in 4 
different ways. First we need to establish that we can write 1105 5 13 17    
as the sum of two squares. Since 

 5 13 17 1 mod 4    

So we can write this 1105 as the sum of two squares. 
First sum of square representation: 
Converting the first two multiples of 1105 5 13 17    into sum of squares 

2 25 2 1   and 2 213 3 2   
Using the identity (8.1): 

       2 22 2 2 2a b c d ac bd ad bc        

On    2 2 2 25 13 2 1 3 2      gives 
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2 2 2 2

2 2

2 2

5 13 2 1 3 2

2 3 1 2 2 2 1 3
4 7

    
                            

 
 

Substituting this 2 25 13 4 7    into the above integer 1105 5 13 17    
gives 



 
     
   

2 24 7
2 2

2 2 2 2

2 2

2 2

1105 5 13 17

4 7 17
4 7 4 1 �

4 4 7 1 4 1 7 4
9 32

 

  

  
   

                            
 

 

So one sum of two square representation of 1105 is 2 29 32 . 
Second sum of square representation: 
Using the above evaluation in (�) but changing the order of the integers: 

   
   
   

2 2 2 2

2 2 2 2

2 2

2 2

1105 4 7 4 1
7 4 4 1 Changing the integers in the first bracket

7 4 4 1 7 1 4 4
24 23

   
       

                            
 

 

Third sum of square representation: 
From the first representation we have  

2 25 2 1  , 2 213 3 2   and 2 217 4 1   
Changing the order of multiplication we have 

   
   

2 2 2 2

2 2

2 2

13 17 3 2 4 1

3 4 2 1 3 1 2 4 By (8.1)
10 11

    
                                  

 
 

Substituting this 2 213 17 10 11    into 1105 5 13 17    gives 

 
   
   
 

2 2 2 2

2 2

2 2 2 2

1105 5 13 17
1 2 10 11

1 10 2 11 1 11 2 10

12 31 12 31

  
   

                            
    

 

Fourth sum of square representation: 
Changing the order of multiplication 

1105 5 17 13    
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Using the previous derivations gives 
2 25 2 1  , 2 217 4 1   and 2 213 3 2    

Putting these into 1105 5 17 13    yields 

     
     

 
   
 

2 2 2 2 2 2

2 2 2 2

2 2 2 2

2 2

2 2 2 2

1105 5 17 13

2 1 4 1 2 3

2 4 1 1 2 1 1 4 2 3

7 6 2 3

14 18 21 12

4 33 4 33

  
        
                                  
      

   

    

 

The four different sum of two squares of 1105 are 
2 29 32 , 2 224 23 , 2 212 31  and 2 24 33  

 

18. We are asked to prove that if n p q   where  1 mod 4p q   then we can 

write n as sum of two squares. 
Proof. 

As we are given that  1 mod 4p q   so we can write these as sum of two 

squares. Let 2 2p a b   and 2 2q c d  . Applying the identity (8.1): 

       2 22 2 2 2a b c d ac bd ad bc        

We have 

        2 22 2 2 2

By (8.1)

n p q a b c d ac bd ad bc           

Hence, we can write n p q   where  1 mod 4p q   as the sum of two 

squares. 
■ 

 
19. (a) The integer 6 cannot be converted into sum of two squares because the 

prime decomposition of 6 2 3   and  3 3 mod 4  so by Corollary (8.8): 

2
1 2 rn p p p N      cannot be expressed as sum of two squares   it has 

a prime factor  3 mod 4jp  . 

Hence 6 cannot be written as the sum of two squares. 

(b) We are asked to show that if  3 or 6 mod 9n   then n cannot be 

expressed as the sum of two squares. 



Complete Solutions 8.1       Page 13 of 22 
 

Proof. 

Consider each case;  3 mod 9n   and then  6 mod 9n  . 

Case I:  3 mod 9n   

By the definition of congruence we have  
9 3n k   where k is an integer 

We can rewrite this by factorizing 

 9 3 3 3 1n k k     

Since the prime 3 is a factor of n and 3 cannot be a factor of 3 1k   so n can 
only have one 3 in its prime decomposition. By Corollary (8.8): 

2
1 2 rn p p p N      cannot be expressed as sum of two squares   it has a 

prime factor  3 mod 4jp  . 

We conclude that n cannot be expressed as the sum of two squares. 

Case II:  6 mod 9n   

Similarly in this case we have  

 9 6 3 3 2n k k     

The integer n only has one 3 in its prime factorization so by the above 
Corollary (8.8) we can say that n cannot be written as the sum of two squares. 

■ 

(c) We are asked to prove that if  6, 12, 24, 30 mod 36n   then n cannot be 

expressed as the sum of two squares. 
Proof. 
By the definition of congruence we can write each of these integers as 

36 6, 36 12, 36 24 and 36 30n k k k k      for some integer k. 

Factorizing these gives 

       
       

6 6 1 , 6 6 2 , 6 6 4 and 6 6 5
2 3 6 1 , 2 3 6 2 , 2 3 6 4 and 2 3 6 5

n k k k k
k k k k

    
            

 

In each of these cases there is only one 3 in the factorization of n so n cannot be 

expressed as the sum of two squares because  3 3 mod 4 . 

■ 

(d) We need to show that if  18 mod 36n   then we cannot necessarily write 

this as the sum of two squares. 
By the definition of congruence we have 
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     2 236 18 9 4 2 3 4 2 2 3 2 1n k k k k           

If 2 1 3k m   where m is not a multiple of 3 then we cannot write  

 22 3 2 1n k     

as the sum of two squares. Why not? 
Because  

 2 2 32 3 2 1 2 3 3 2 3n k m m           

So by Corollary (8.8): 
2

1 2 rn p p p N      cannot be expressed as sum of two squares   it has a 

prime factor  3 mod 4jp  . 

We conclude that n cannot be expressed as the sum of two squares. 

Note that if  2 1 1 mod 4k    then we can write  18 mod 36n   as the sum 

of two squares.  

The question says explain why we cannot say  18 mod 36n  . From the above 

discussion we see that we can sometimes but we just cannot conclude this for every 

 18 mod 36n  . 

 

20. We need to prove that if 2 e kn p q    where  3 mod 4p  , e is even, 

 1 mod 4q   and k is any natural number then  n can be expressed as sum of 

two squares. 
Proof. 
We are given that 2 e kn p q    where e is an even integer. By Corollary 
(8.8): 

2
1 2 rn p p p N      cannot be expressed as sum of two squares   it has a 

prime factor  3 mod 4jp  . 

As we are given that  3 mod 4p   and is to an even power ep  in  

2 e kn p q    
So, by this corollary we can say that n can be written as the sum of two 
squares. 

■ 
 

21. (a) We need to disprove the given statement which is: 
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If m  is the sum of two squares and m n  then n is also the sum of two 

squares. 

Let 5m   and 15n   then 5 15  but 15 3 5   cannot be written as the 

sum of two squares. 
(b) We are asked to disprove; 
If both m and n are sum of two squares then m n  is also the sum of two 
squares. 
Let 5m   and 2n   then both of these can be expressed as the sum of two 
squares; 2 25 2 1   and 2 22 1 1  . However 

 5 2 7 3 mod 4m n      

Since  7 3 mod 4  so it cannot be expressed as the sum of two squares. 

(c) We are given that 1 2,n n  and 3n  cannot be expressed as the sum of two 

squares so by Corollary (8.8): 
2

1 2 rn p p p N      cannot be expressed as sum of two squares   it has a 

prime factor  3 mod 4jp  . 

Let 1 3n  , 2 7n   and 3 15n   then 
2 2

1 2 3 3 7 15 25 5 0n n n         

Hence 1 2 3n n n   can be written as the sum of two squares. 

 
22. (i) We need to prove: 

A prime p which satisfies  1 mod 4p   can be written uniquely as the sum of 

two squares. 
Proof. 

Let  1 mod 4p   and suppose there are two ways of expressing this prime as 

sum of two squares 
2 2 2 2p a b c d       (*) 

where 1, 1, 1 and 1a b c d    . Required to prove  

a c , b d  or ,a d b c   

By the Conversion Identity (8.1) we have 

        2 22 2 2 2 2

By (8.1)

p a b c d ac bd ad bc          (�) 
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By using the other sum of squares identity given in question 12: 

       2 22 2 2 2 2p a b c d ac bd ad bc          (��) 

Re-arranging the equation in (*) we have 
2 2 2 2  and  p a b p c d     

Multiplying the first equation by 2d  and the second by 2b  gives 

   2 2 2 2 2 2 2 2  and  p a d b d b p c b d     

Equating these two yields (because both are equal to 2 2b d ) 

   2 2 2 2

2 2 2 2 2 2 Expanding
p a d b p c

pd a d b p b c
  

      
 

Collecting like terms and factorizing  

      
2 2 2 2 2 2

2 2

By Difference 
of two squares

(**)
pd b p a d b c

p d b ad bc ad bc
  
      

From this last line we have    p ad bc ad bc   . By Proposition (2.2): 

If p is prime and  p a b  then p a  or p b . 

Applying this proposition to    p ad bc ad bc    gives 

 p ad bc  or  p ad bc  

Consider the first case  p ad bc . From this  

 p ad bc  implies  22p ad bc . 

By (��) we must have 0ad bc  . Why? 

Because  22p m ad bc   and  2 1ac bd   (we are given 1, 1, 1a b c  

and 1d  ): 

       
    

2 2 22 2

22

Rearranging

By �

1 0.

p ac bd ad bc ac bd p m

p m ac bd m

          
    

 

Substituting 0m   into  22p m ad bc   implies 0ad bc  .   

Substituting this 0ad bc   into (**) yields 

 2 2 2 2 2 20 0 Because  1, 1p d b d b d b d b d b               

Substituting this d b  into (*) gives  
2 2 2 2 2 2 Because  1, 1p a d c d a c a c a c              
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Hence, we have ,a c b d   so the representation is unique. 

Consider the second case  p ad bc . Similarly we have 

 22p ad bc  

Using this  22p ad bc  in (�) we have  

0ac bd    (�) 
because  

   2 22p ac bd ad bc        

From (*)  2 2 2 2p a b c d     we have  

   
2 2

2 2 2 2 2 2 2 2Because 
b c

p a c b p d b c b c
 

       
 

Again rearranging this by expansion and factorization gives 

     
2 2 2 2 2 2

2 2 2 2 2 2

Difference of
two squares

pc a c pb b d
p c b a c b d ac bd ac bd

  
       

From (�) we have 0ac bd  . Putting this into the above yields 

 2 2 2 20p c b c b c b       

Substituting c b  into (*) gives 
2 2 2 2 2 2a c c d a d a d        

We have ,a d b c  .  

Again the sum of squares representation is unique. 
This completes our proof. 

■ 
 (ii) We need to prove that  

An odd prime p can be written as sum of two squares uniquely   

 1 mod 4p  . 

Proof.  
Uniqueness has been proved in part (i).  
( ). By Theorem (8.3): 

Every prime  1 mod 4p   can be written as the sum of two squares. 

We can write p has sum of two squares. 
( ). Let the prime p satisfy 2 2p a b  .  
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Then by question 2 of Exercises 1(b): 

The square of any integer is of the form 4 or 4 1m m  . 

 Applying this we have  

 2 2 0, 1 0,1 0, 1, 2 mod 4p a b      

 We are assuming p is an odd prime so p  0, 2 mod 4 . Hence  1 mod 4p  . 

 This completes our proof. 
■ 

 
23.  How do we prove the given result? 

By mathematical induction. 
Proof. 

If there is only one prime in n, say n p  where  1 mod 4p   then by the 

result of the previous question, there is only one way to write n as the sum of 

two squares. Hence 1 1 02 2 1   . Our result holds for the base case. 
Assume that the result is also true for r k ; 

This means that if n has k distinct primes which satisfy  1 mod 4p   then 

there are 12k  different ways of expressing n as the sum of two squares. 
Required to prove that if n has 1k   distinct primes which satisfy 

 1 mod 4p   then there are 2k  different ways of expressing n as sum of two 

squares. 
We have  1 2 1k kn p p p p      . We can write  

2 2
1 2 kp p p a b       [As sum of two squares.] 

Also we can write 1kp   as sum of two squares 
2 2

1kp c d    

Therefore  

 
   

1 2 1
2 2 2 2

k kn p p p p
a b c d

    
   


 

Applying the Conversion Identity (8.1) and the identity given in question 12 to 

this    2 2 2 2n a b c d     yields 

   
   
   

2 2 2 2

2 2

2 2

By (8.1)

By result of question 12

n a b c d

ac bd ad bc

ac bd ad bc
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Now each of these squares integers are distinct. Why? 
Suppose ac bd ac bd    then we have 0 2bd  which gives 0b   or 0d  . 
This is impossible as the given primes p’s are distinct and this would imply that  

2
1 2 kp p p a     or 2

1kp c  . 

Similarly if ac bd ad bc    then 

       Cancelling  a c d b d c b c d a b c d             

This a b  is impossible because we would have 
2 2 2

1 2 2kp p p a b b      . 

Remember all the primes satisfy  1 mod 4p   so are odd. 

As all the primes in this decomposition are odd so  

   
   

2 2

2 2

ac bd ad bc

ac bd ad bc

  

  
 

Hence we can express  1 2 1k kn p p p p       as the sum of two different 

squares which are given above by: 

   
   

2 2

2 2

n ac bd ad bc

ac bd ad bc

   

   
 

By our above assumption of the mathematical induction step we know that  

1 2 kp p p    can be expressed as 12k  different sum of squares 

Writing each sum of squares as  
2 2

1 2 k j jp p p a b      for 11 , , 2kj   . 

We can express   1 2 1k kn p p p p       in the following 2 sum of squares 

for each 11 , , 2kj   : 

   
   

2 2

2 2
j j j j

j j j j

n a c b d a d b c

a c b d a d b c

   

   
 

Hence there are 12 2 2k k    different ways of expressing n as the sum of two 
squares.  
Therefore by mathematical induction we have our required result. 

■ 
 

24. We are asked to prove: 
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Let 2
1 2 rn p p p N      where p’s are distinct primes. If n can be 

expressed as sum of two squares then none of these primes jp  satisfies 

 3 mod 4jp   for 1, ,j r  . 

Proof. 
Assume that n can be expressed as sum of two squares; 

2 2 2
1 2 rn a b p p p N         (*) 

If 2n N  then we don’t have any of these primes so the result holds.  
Suppose p is an odd prime amongst 1 2, , , rp p p  such that  

 3 mod 4p  . 

Let  gcd ,g a b  then there are integers x and y  such that 

gx a  and gy b . 
Then from (*) we have 

 
2 2

2 2 2 2 2 2 2 2

n a b
g x g y g x y g n

 
    

 

Since 2
1 2 rn p p p N      so 2 2g N  because the primes p are distinct so 

 2
1 2gcd , 1rp p p g    . 

Therefore 2 2x y  must be a multiple of p. Why? 
Because from above we have 

 

 

2 2 2 2
1 2

2 2
2 2 1 2

2 2

2 2
1 2

and integer

integer where  is amongst the 's

r

r

r j

g x y n p p p N
p p p N Nx y

g g
x y p p p p p

      
   

   

      






 

Therefore we have 

 2 2 0 modx y p    (*) 

Since  gcd , 1x y  . Why? 

Because by Proposition (1.5): 

If  gcd ,a b g  then gcd , 1a b
g g
      

. 

From this  gcd , 1x y   and  2 2 0 modx y p   either  gcd , 1x p   or 

 gcd , 1y p  . Why? 
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Because otherwise p would be a common factor of x  and y. This cannot be the 

case because  gcd , 1x y  . 

Without loss of generality let  gcd , 1x p  . Therefore  modx p  has a 

multiplicative inverse x   say: 

 1 modx x p   

Multiplying the congruence in (*) by  2x   gives 

     
 

 

   

2 2 2 22 2

1 mod
2

1 0 mod
p

x x y x x x y x

y x p


       

   


 

Re-arranging this we have 

   2
1 mody x p   

Hence we have 1  is a quadratic residue of modulo p. 
By the following result of quadratic residue from the last chapter, question 6 of 
Exercises 7(a): 

1  is a QR of p  1 mod 4p  . 

From this we have  1 mod 4p   because 1  is a quadratic residue of modulo 

p. We have a contradiction to our supposition that  3 mod 4p  .  

Hence none of the primes jp  satisfies  3 mod 4jp   for 1, ,j r  . 

This completes our proof. 
■ 

 
25. We need to prove the following: 

Let 2
1 2 rn p p p N      where p’s are distinct primes. Then n cannot be 

expressed as sum of two squares   it has a prime factor  3 mod 4jp  . 

 Proof. 
 By combining Theorems (8.5) and (8.7) we have 

 Let n be a positive integer given by 2
1 2 rn p p p N      where the p’s are 

distinct primes. Then n can be expressed as sum of two squares   every prime 

jp  satisfies 2jp   or  1 mod 4jp   for 1, ,j r  . 
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If for some j in 1, ,j r   there is a prime  3 mod 4jp   then by the 

contrapositive of these theorems we have our result. 
This completes our proof. 

■ 
 


