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Complete Solutions to Exercise 7.4

1. In each case we use the corollary:

) % iprl(mod4) 0rq51<m0d4)
(7.17) ==
q _% ifpz3(mod4) andqz3(mod4)

(a) We are asked to see if 2 =12 (mod 89) is solvable. This means we need to

determine the Legendre symbol [g] We know that 12 =2° x 3 so
2
12) z NEARSWEN N "
89 89 89 89 89

——
Since 89 =1 (mod 4) so by using (7.17) on the right-hand side of (}) we have

=1 because 2* is a quadratic residue
31|89 _|2
89 3 3

Applying the test for residue 2, Proposition (7.15):

[Because 89 =2 (mod 3)} .

1 ipr:I:l(modS)
1 ipr:bS(modS)

= —1. By (1) and this result we have

o

12
Since [@] = —1 so 12 is a quadratic non-residue of 89 which implies that

To [2] with 3 =3 (mod 8) gives [

w N
~—————

12
89

> =12 (mod 89) is unsolvable.

(b) We need to test whether z* = 40 (mod 101) is solvable. This means we must

4
find the Legendre symbol [%] The prime decomposition of 40 is

40=8x5=2*x5:
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40 [2°x5] [ 2° |5
101 101 101 101
22 2 5
= X X
101] (101) (101

ATAT A

We use our normal test for residue 2, Proposition (7.15):

1 ipr:I:l(modS)
1 ipr:bS(modS)

Since p=101=5=-3 (mod 8) SO [%] = —1. Evaluating the other term in (7):

101 Because ;;l (mod 4) 5 Because 1[;;1 (mod 5) 5

[Remember 1 is a quadratic residue of any odd prime p.]

Substituting

21 = —1 and [é] =1 into (}) gives

[1201] - [131] - [121] = (~1)x(1)=-1.

Hence 40 is a quadratic non — residue of 101 so z° = 40 (mod 101) cannot be solved.

(c) We are given the quadratic congruence z° = 36 (mod 1223) and since 36 = 6 so
=6 (mod 1223) . Therefore 2* = 36(m0d 1223) is solvable.

(d) We have to find whether z* = 89 (mod 197) is solvable. This means we need to

calculate the Legendre symbol [189—97] Since 89 =1 (mod 4) so by (7.17) we have
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2P e e

197 |89 ] (89
89 _ .
= T Because 89 =1 (mod 4) so applying (7.17)}
= 13 Because 89 =13 (mod 19)}
19
19 .
= 3 Because 13 =1 (mod 4) so applying (7.17)J
= 6 Because 19 =6 (mod 13)}
13
= 2 X 3 [Because 6 = 2><3}
13 13

So far we have
89 2 3
— | =— | X|—
e
The residue 2 is tested by using Proposition (7.15):

1 if pEil(modS)
-1 if p=43 (mod 8)

2
Since 13=5= -3 (mod 8) so using this proposition we have [E] =—1.

Evaluating the other Legendre symbol on the right - hand side of (1):

3 = E [Because 13=1 (mod 4) so applying (7.17)}
13 3
1
= [—] =1 [Because 13=1 (mod 3)}
3

Putting these [%] = —1 and [%] =1 into (I) gives

-l

Since ﬁ =—1s0 2> =89 (mod 197) is not solvable.
197

(e) We need to test whether 2* =197 (mod 89) is solvable. We have to find [%]

Since 89 =1 (mod 4) so by (7.17) we have 97 _ |3 :
89 197
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This was evaluated in part (d) and we had [%] =—-1= [

197

. Hence
89 ]

2’ =197 (mod 89) is unsolvable.

2. We need to find (— 1)[1721}[(121] for i) p=1 (mod 4), g=3 (mod 4) and
(i) p = 3 (mod 4), g=1 (mod 4).
(i) We are given that p=1 (mod 4), q=3 (mod 4) so there are integers k£ and m

such that
p=4k+1 and ¢ =4m+ 3

-1 -1
Substituting these into the index P X [q 5 ] gives
p—1 g—1 4k +1-1 dm+3 -1
X = X
2 2 2 2
= 2k X (Qm + 1) [Even Number]

So (—1)[1)21]X[{121] = (_1)2kx(2’"+l) —1 .

(ii) Similarly, for p =3 (mod 4], g=1 (mod 4) by interchanging p and ¢ we have

(—1)[1121][21] =1.

3. We need to show that:

p| [q] |1 ifpzl(m0d4) or qzl(mod4)
g ) ; =1t quES(mod4)
Proof.
We have by the Law of Quadratic Reciprocity:
2] [2] = (a7
7) "\ SR
So Pl = (—1)[?721}[%1]
q p

We found in Example 17 and question 2 above that if p =1 (mod 4) or

p;l]x[q;l

P :(—1)[2 2]:1andifpzqz3(mod4)then

q

4
p

g=1 (mod 4) then X
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2] [a] = o)~
mhe ] (—1) = 1
This is our required result.
Pl p=1 (modél)
4. We need to prove for p > 3 that |—|= 3
p —g ipr3(mod4)

Proof.

To prove this we use the following corollary:

) % iprl(mod4) 0rq51<m0d4)
(7.17) ==
q —|L iprS(mod4) andqz3(mod4)
p

This proves our required result.

5. (i) We are required to prove that for prime p > 3 we have

1if p=1 (modG)

-3
D B ST p=> (modG)
Proof.
Since —3 =—1x3 so
-3 -1 3
=== (1
p p p
By (7.11) we have
1 1 if p= (mod 4)

Page 5 of 25
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By result of question 11(i) of Exercise 7.3 we have

1if p=1orll (mod12)
—1if p=5or7 (modl?)

We use these two results and (7).

Consider the two cases (i) p =1 (mod 6) and (ii) p=5 (mod 6) .
Case (i)

Let p = l(mod 6) then there is a positive integer such that p = 6k + 1. Now either

k is even or odd. Let us first take k to be even then k& = 2m where m is a positive
integer. Substituting this into p = 6k + 1 gives
=6(2m)+1=12m +1=4(3m)+1.

Hence p=1 (mod 12) and p =1 (mod 4) so using the above results and (1):

-3

p p p
Now let us take k to be odd so k =2n 4+ 1 where n is a positive integer. Putting

(=1} (3

=1x1=1.

this into p = 6k 4+ 1 gives
p=6(2n+1)+1:12n+7=4(3n+1)+3.

Therefore p =7 (mod 12) and p=3 (mod 4) so again using the above results with

(1):
-3

p

=1lif p=1 (mod 6) . This proves
p

In both cases (k is odd and even) we have

the first part of the result.

Case (ii)

Let p = 5(mod 6) then there is a positive integer k such that p = 6k + 5. Now

either kis even or odd. Let us first take & to be even then k = 2m where m is a
positive integer. Substituting this into p = 6k + 5 gives
p=6(2m)+5=12m+5=4(3m+1)+1.

Hence p =5 (mod 12) and p=1 (mod 4) so using the above results and (}):
3

p =1x(-1)=-1.
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Now let us take k to be odd so k =2n 4+ 1 where n is a positive integer. Putting
this into p = 6k 4+ 5 gives
p=6(2n+1)+5=12n+11=4(3n+2)+3.

Therefore p =11 (mod 12) and p =3 (mod 4) so again using the above results with
(1):

In both cases (k is odd and even) we have =—1if p= 5(mod 6). This proves

p

the second part of the result.
1if p=1 (modG)
—1 if p=5 (mod 6)

-3

p

Therefore, we have . This is our required result.

(ii) We use the result of part (i) to factorize each of the integers in this part.

(a) We are asked to find the prime factorization of 104* + 3 =10 819. Since our
integer is of the form n° 4+ 3 so the odd prime factors p of this 104> + 3 must
satisfy p = 1(mod 6). The first few primes are 7, 13, 19, 31, 37, 43, -—-. Dividing
10 819 by each of these we find that

10 819 = 31 x 349.

We have

\/%J = 18 and none of the primes in the above list below 18 go into 349,
so 349 is prime. Hence 10 819 = 31 x 349.

(b) We need to find the prime factorization of 236 + 3 = 55 699 . Let p be a prime
factor of 236> 4+ 3 then p = l(mod 6) and the primes of this form are 7, 13, 19, 31,

37, 43, 61, 67, 73 --—- and we find that

55 699
=763 = 55699 =73 x763.

We just need to factorize 763 but let us first see which primes we need to test. We
\763

go into 763. How do we know this?

have = 27 and there are no primes in the above list which are below 27 and

Because if there was a smaller prime then it would also be a factor of 55 699 and
the first prime to be a factor of 55 699 is 73. Therefore 763 is prime and
55 699 = 73 x 763.
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(c) We are asked to factorize 362’ + 3 =131 047 . Let p be a prime factor of this

number then p = 1(mod 6) . The first of these is 7 and we find that

131 047
=18 721.

J18 721

p= 1(mod 6) and first few are 7, 13, 19, 31, 37, 43, 61, 67, 73, 79 and 97 which is a

From this we have =136. We need to now try prime factors which satisfy

factor of 18 721 because 18 721 = 97 x193. Now 193 is prime so the prime
factorization of 131 047 = 7 x 97 x193.

6. We are required to prove that prime factors of the integer n* —n + 1 are of the
form 6k +1.
Proof.

Let p be an arbitrary prime factor of the given integer n* —n +1. We have
n? —n—i—lEO(mOd p).
By using the given hint in the question consider the integer
(2n—1)2 =4n’ —4n—i—1:4(n2 —n+1>—3.
Using the first result we have
(2n—1)254(n2—n+1)—350—35—3(m0dp) (*)

Let z = 2n — 1 and substituting this into (*) yields

z* =-3 (mod p)
This is a quadratic congruence. Hence we need to find for which primes p is the

p

Legendre symbol =1 because when the Legendre symbol is equal to 1 we have

a quadratic residue.
By the result of the previous question:

1if p=1 (mod 6)
—1if p=5 (mod 6)

-3

p

Hence the prime p must be of the form p =1 (mod 6) so p = 6k + 1 for some

positive integer k.
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7. We are asked to prove that there are infinitely many primes of the form 8k —1.
Proof.
We use the given hint and suppose there are finitely many primes of the form
8k —1 which we can denote as p,, p,, =+, p,.Let n=p X p x ---xp_ and
consider the integer N = (471)2 — 2. Clearly N is composite because 2 is factor of N.
Let p be a prime factor greater than 2 (or an odd prime) of N. Then

N = (4n)2 —-2= O(mod p).
Let x = 4n then we have

NE$2—2EO(m0dp) = 2 52(m0dp)
This 2> =2 (mod p) and is solvable because z = 4n so [z] = 1. By question 3(i) of
p

Exercises 7.3:

2 is a quadratic residue of prime p & p = j:l(mod 8).

we have p = =1 (mod 8) , which implies that

p=8k+1or p=8k—1.
If all the prime factors greater than 2 of N are of the form 8% 41 then the product
of this is also of the form 8m +1 (this can be shown by induction) but this is

2
impossible because N = (4n) — 2. Hence N must have a prime factor of the form
p = 8k — 1. Clearly this p = 8k —1 is not one in the above list p, p,, -, p, . Why

not?
2 2
If it is then p‘ n so p‘ <4n> and p‘ N and since N = <4n> —2 so
P ‘ 2.
This is impossible because p is an odd prime.

Hence there are infinitely many primes of the form 8% —1.

(’1’1)/2 k% P (p-1 /2 k% q
8. We need to find the given sum —|+ ——| for the primes p =17
k=1 q k=1 p
C . — —1
and ¢ = 13. Substituting these p =17 and ¢ = 13 into P and <

respectively gives
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p-1_17-1_ q-1_13-1_
2 2 2 2

Evaluating the sum separately:

jékxl? 1x17 2x17 3x17 4x17 5x17 6x17

+ +
pay 13 13 13 13 13 13
17 34 51 68 85 102
=|—|t+|—=|t =+ =+ = +|—
13 13 13 13 13 13
=14+24+34+5+64+7=24
i:kxlS 1x13 2><13 3x13 4><13+5><13+6><13 7x13 8x13
k=1 17 17 17
104
+
17
—O+1—|—2—|—3+3+4—|—5—|—6—24
Adding both these summations gives
6 8
kan +Zk><13 — 24 +24 = 48
k=1 k=1
Drawing the graph gives:
)4 _13x
|
| =~
6T o ® ® ®
5+  J ®
4 1 ® ] ® ®
3+ ° ® » *
2+ ® ® o ®
1__
< 1 1 1 % X
1 2 3 4 5 6 7 8 9

The number of lattice points shown in this graph is 6 x 8 = 48 which is given by

the above sum.

9. (See Example 17.) Consider the two different cases:
(a) pzl(mod 4) or qzl(mod 4).
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(b) Both p =3 (mod 4) and ¢ =3 (mod 4).

Case (a)
Let p=1 (mod 4) then there exists a positive integer k such that p =4k +1.

. .. . . . . p—1 qg—1
Putting this into the index of Law of Quadratic Reciprocity X 5 we
have

p—lxq—l = éjik—'—l_lxq_1 :2k><q—_1 [Evenbecauseqisodd]
2 2 2 2 2
) . {12;&%1] 2hx 47*1]
—|x|=|= (—1) = (—1) =1 [Because index is even]
q p
Since [Z{x|L|=150 |2|=]ZL|=1 or |Z|=|L = —1. Either way 2 :[g].
q p q p q p q p

We can present the same argument with ¢ =1 (mod 4).

Case (b)

Let p=3 (mod 4) and ¢ =3 (mod 4) then there are positive integers k£ and m such
that

p=4k+ 3 and ¢ =4m + 3.

Substituting this into the index of the Law of Quadratic Reciprocity yields

p—lxq—l B 4k+3—1x4m+3—1
2 2 2 2
= 4k2+ 2 X dm +2 = (2k + 1) X (2m + 1) [Odd number
Therefore [2 X 4| (—1)(2“1)(2%1) = —1 because (2k + 1)(2m + 1) is odd.
q b
We have 2]:1 and 4 =—1 or [2]: —1 and |=|=1. Hence [E] —_|L
q ¥4 q b q b

This completes our proof.
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(])71)/2
10. We need to prove that Z ka =g (mod 2) where p /' a and g be the number
=1 | P
of negative residues defined in Gauss’s Lemma.
Proof.
Let S be the set of the product of k£ and a where k=1, 2, 3, ---, pT—l:
S = {a, 2a, 3a, 4a, ---, [pT_l]a}

The integer ¢ is defined as the number of negative residues in this list, these are the

. -1
ones which are greater than =
2

We can write each of these ka as a residue of modulo p which lies between _[pT—l]

p—1

and . We can illustrate this on a modulo p clock:

0 (mod p)

Negative residue -1 (mod p)
Positive residue
-2 (mod p)

Modulo p

-3 (mod p)

—1 _
P modp) P (modp)
Denoting each of these residues by 7, that is
ka = (mod p).

If r, is positive then ka is one of the least positive residues in the set

ka }

—|. So dividing these integers in the set T
p

p—1

T:{la 27 37 47 Tty
2

We need to consider the floor function

by p and then evaluating the floor function gives
p-1

Tl:{l 2 3 4 2p }:{0, 0, 0’ 0’ e ()}

If . is negative, then ka is one of the negative residues in the set

»| |p| |p| |p/
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|

p—1

U:{—l, —2, =3, —4, -, —
2

Similarly finding the floor function |—| gives
p
U'= _la _27 _27 _£7"7 _p—_l :{_17 _17 17 17 ) _1}
p p p p 2p
(- 1/2
—| gives
k=1
D2 1 al  |2a 3a p—1
Yo l=l=|= ot
= P p] |p p 2 p
=0+0+ (—1—1—..-—1) +0--40
g=Number of r;egative residlies
=-—g (mod p)
Taking modulo 2 we have
(-1)/2
ka =-g=g (m0d2)
k=1 | P
This is our required result.
]
(p-1)/2 ka
11. Substituting p =13 and a = 16 into Z gives
k=1 | D
z": 16k| 16 32| (48] |64 n 80 n 96
P 13 13 13 13 13 13

=14+24+3+4+6+7=23
We have ka =16, 32, 48, 64, 80, 96, Writing these integers as residues between
—6 and 6 of modulo 13 gives
ka=16=3, 32=6, 48= 4, 64=—1, 80=2, 96=5 (mod13)

Hence g =2. We have 23 # 2 (mod 2). Why doesn’t Lemma (7.20) work in this

case?

Because ¢ = 16 but in the Lemma it states that let ‘a also be odd’.

12. We need to prove that odd prime divisors of the integer n° 4+ 1 are of the form
4k +1.
Proof.
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Let p be an odd prime divisor of n* +1, that is
n+1=0 (mod p) implies that n* = —1 (mod p).
By question 6 of Exercises 7.1:

—1 is a QR of an odd prime p < p El(Inod 4).

The quadratic congruence n’ = —1 (mod p) has solutions so p =1 (mod 4) which

implies that p =4k + 1.

13. We need to prove that there are an infinite number of primes of the form
3m+1.

Proof.

Suppose there are a finite number of primes of the form 3m + 1 which we can write

in a list as
by, Dy Pyy s D,
Consider the integer
2
N=(3><p1><p2><p3><---><pn) +3.
N is composite because 3 is a factor of N. This implies that we must have a prime
factor, p > 3 say of N. By using modular arithmetic we have
2 2
(3><p1><p2 xpgx---xpn) +350(m0d p) = (3><p1><p2 xpgx---xpn) =-3 (mod p)
Let 3x p, xp, X p, X -+Xp =z then the above can be written as
z* =-3 (mod p).
This is a quadratic congruence. We know it has solutions because
T =3Xp Xp,---Xp soitis solvable. By the result of question 5:
1if p=1 (modG)
—1 if p=5 (mod 6)

-3

p

We have p =1 (mod 6) so p = 6k + 1. Writing this as a factor of 3 gives
= 3(2k)+1
We have p = 3(2k> + 1 which is of the form 3m + 1 and is a prime factor of N, that

is p ‘ N . Since p is of the form 3m + 1 so it must be one in the above finite list

Py Dy Pyy =05 D,



Complete Solutions 7.4  Page 15 of 25

2
From this we have p ‘ (3><p1><p2><p3><---><pn) .
Since
2
N:(3xp1><p2><p3><-~-><pn) +3

2
And p ‘ N and p (3 X P, X P, X Py XX pn) SO p ‘ 3 this is impossible because

p > 3. We have a contradiction so there are an infinite number of primes of the

form 3m +1.

14. (a) We are required to find z in 25" =z (mod 1993) given that 1993 is prime.

Using Euler’s Criterion (7.5):

p—1
2

a is a quadratic residue of p < a? =1 (mod p)
We have a = 25 = 5% so clearly 5 is a quadratic residue of 1993 so by (7.5) we have

1993-1

95 2 = 95"% El(mod 1993)

Multiplying both sides of this result 25" =1 (mod 1993) by 25 yields
25 x 25" = 25" = 25 (mod 1993)
Hence z = 25 (mod 1993) .

(b) We are asked to find the least positive residue z in 26" =z (mod 1993). The

prime decomposition of 26 is 2 x 13. We need to check that if 2 and 13 are

quadratic residues of 1993 because

26 2 13
[1993] N [1993] - [1993] ®)

For 2 we use (7.15)

1 if pEil(modS)
-1 if p=43 (mod 8)

Since 1993 =1 (mod 8) SO

] =1 which implies that 2 is a quadratic residue of

1993.

We need to find the other Legendre symbol [%J . Since 13 =1 (mod 4) so by
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g ifpzl(mod4> orqzl<m0d4)
p|_ p
(.17) [_] _
1 |4 iprB(mod4) anqu3(mod4)
p
We have
13 = 1993 = 4 [Because 1993 =14 (mod 13)}
1993 13 13
2
= %] =1 [Because 2* is a quadratic residue}
Substituting these into (*) yields
26: 2><13:11:1
1993 1993 1993

Hence 26 is a quadratic residue of 1993 so by Euler’s Criterion
1993—1

2% * =926" El(mod 1993).

Therefore 26”7 = 26 (mod 1993) or =26 (mod 1993) .

p—1

2 _1].

15. We are required to prove that if p = 8k + 1 then p

Proof.
We are given p = 8k + 1 therefore p =1 (mod 8). By

1 if pE:I:l(modS)
S T pE:ES(modS)

We have —] =1 which implies that 2 is a quadratic residue of p. By Euler’s

Criterion (7.5):
p—1

a is a quadratic residue of p < a? =1 (mod p)

Using this criterion with ¢ = 2 we have

p1 p1

p :1(modp) ~ 22 _1=0 (modp).
1

2 2 —1|. This completes our

E
0 (mod p) so we conclude that p

Since 2?2 —1=

proof.
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2
16. We are asked to show that |[—=|=|Z provided p =1 (mod 4).
p
Proof.
Factorizing 2a =2 xa so
2a 2 a
== 12 |x )4 1
p p p

We are given that p =1 (mod 4) therefore by (7.15):

1 ipr:I:l(modS)
1 ipr:bS(modS)

2

p

This implies that if p =1 (mod 8) which in turn implies that
p:8k+1:4<2k‘>—|—1 then

21,
b
2 2
Substituting this into (1) gives o2 x| =1x| 2 =2
b p p p p
This completes our proof.
p-1
2
17. We need to show that if p = 1(mod 4) then Z —|=0.
a=1 p
Proof.
N _
We need to show that Z[g = l + z + é + -+ p_l =0.
1\ P p P p 2p

From question 7(a) of the Exercise 7.1 we have the following result:

Page 17 of 25

If a is a quadratic residue then p —a is a quadratic residue < p =1 (mod 4).

Consider the set

p—1 p+1
S = 17 27 37 Ty ’ ) 7p_37p_27p_1
2 2
First half of the least positive residues modulo p Last half of the least positive residues modulo p

The above result claims that if 1 is a quadratic residue then so is p —1 and if 2 is a

quadratic residue so is p —2 and so on.

This implies that the quadratic residues in the above list are symmetrical. By

Proposition (7.4):
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-1 . . —1 . .
There are exactly pT quadratic residues and pT quadratic non-residues of p.

Since the list in S is symmetrical so half the residues in the first half, that is

L2 3 - p—1

2

First half of the least positive residues modulo p

must be quadratic residues and half of these must be quadratic non-residues. By the

definition of the Legendre symbol (7.7):

a 1 if a is a quadratic residue of p
P ~ |-1 if a is a quadratic non-residue of p
Therefore
p—1
2 1 2 3 -1
Zﬁ:_+_+_+...+_p =0
—\r) \p) \p) (p 2p
This is our required result.
18. We are given the following table:
Prime p 3 7 11 13 17 19 23 29 | 31
(5/p) I e i

Prediction is

5

p

1 if p=41 (mod 5)
1 if p=42 (mod 5)

We need to prove this.
Proof.

We need to consider the four different cases:
i) p=1 (mod 5) (ii)) p=-—1 (mod 5)
(iii) p=2 (mod 5) (iv) p=-2 (mod 5)

In each case we use the popular corollary:

g ifpzl(mod4> orqzl<m0d4)
(7.17) LA N
1 —; iprB(mod4) anqu3(mod4)
Since b =1 (mod 4) we have ; = g .
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Case (i):
Applying this to p =1 (mod 5) :
> —| 2= 1 =1 [Because p=1 (mod 5)]
P 5! 5}
Case (ii):
This time p = —1 (mod 5) SO
> —|2|= -1 [Because p=-1 (mod 5)}
P 5} 5!
Using
_ 1 if p=1{(mod4
(7.11) i [mod 4)
D -1 if pES(mOd 4)
-1
We have |—|= —] =1 because 5 =1 (mod 4) .
P )
Case (iii):
We consider the case p =2 (mod 5) :
> —| 2= 2 [Because p=2 (mod 5)}
P 5! 5}

Applying the following to (2/ 5):

1 if pE:I:l(mod 8)

2
p) -1 it pE:ES(modS)
In view of 5 = —3 (mod 8) we have
5112124
P )
Case (iv):
This time we have p = —2 (mod 5) SO
> —|2|= _—2] [Because p=-—2 (mod 5)}
P 5} 5}
Therefore
D 5 5 5

——
=1 by (7.11) =—1 by (7.15)

We have considered all four cases and shown our predicted formula.

Page 19 of 25
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To factorize each of the given integers we need to use our predicted formula:
1 if p=41 (mod 5)
1 if p=42 (mod 5)

5

p

(a) We are asked to factorize 104> —5 =10 811. Let p be a prime factor of
10 811 therefore p satisfies p = +1 (mod 5) . The first couple of primes of this

V569

need to test if 19 goes into 569 but it doesn’t so 569 is prime. Hence
10 811 =19 x 569.

format are 11, 19 and we find that 10 811 =19 x 569. Also = 23 so we only

(b) Like part (a) we must find the prime factorization of
504> — 5 = 254 011
Let p be a prime factor of this number then p = +1 (mod 5) and testing primes of
this format 11, 19, 29, 31, 41, -—-. Clearly 11 is not a factor because adding the
digits of 254 011 gives 1 —14+0—-4+5—2=—1 and llJ/(—l). Trying 19 we have
254011 =19 x 13 369

Also

13 369‘ =115 so we need to test primes up to 115. Again 11 cannot be a

factor as it is not a factor of the original number. We find that 19 is also not a
factor. The next prime after 19 of the format p = +1 (mod 5) is 29 and
13 369 = 29 x 461

Also 461 is prime because we have tested primes up to 29 and l\/ 461J = 21. Hence

254011 =19 x29 x 461.

19. We need to prove:
7

—1 if p=+1, +3, i9(mod28)
p

Proof.
Arguing along similar lines to solution of previous question we have the following

cases:

p=1 (mod 28):
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Since p=1 (mod 28) so p=28k+1= 7(4k> +1= 4(7k> + 1 which implies that
p=1 (mod 7) and p=1 (mod 4). Applying (7.17) we have
7

p

b

1
= 7] = [;} =1
By (7.17) Because p=1 (mod 7)

p=-1 (mod 28):

Since p = —1 (mod 28) so p=28k—1= 7(4k> — 1 which implies that
pz—l(mOd?) and pz—153(m0d4):

= -3 (0

Because p=—1 (mod 7)

7

p

b

-~
By (7.17)

Now we use the test for residue —1 which is

1 if pEl(mod4>

(7-1) -1 if p=3 (mod 4)

As 7=3 (mod 4) so applying (7.11) gives (—1/7) = —1. Substituting this into (f)

yields

p=3 (mod 28):

In view of p =3 (mod 28) so p=28k+3= 7(4k> +3 = 4(7k) + 3 which implies

that p=3 (mod 7) and p=3 (mod 4). Applying (7.17) we have
[z
p

p=-3 (mod 28):

p

7 Because p=3 (mod 7) 7

- _[g] _ +[§] _ [%] =1 [Because 7=1(mod 3|

by (7.17)

Ll

-~
By (7.17)

In view of p =—-3 (mod 28) so p=28k—3= 7<4k) -3 = 4<7k:) — 3 which implies
that p=-3 (mod 7) and p=-3=1 (mod 4). Applying (7.17) we have
7

p

p _ ) O Y DR *
? Becausep?3(mod7)[ 7 ] [ 7 ]X[7] ( )

Evaluating each of the Legendre symbols on the right - hand side of (*).

=
By (7.17)
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As 7T=3 (mod 4) so by applying

—1

p

1 if pzl(mod4)

(7-11) 1 if pE3(m0d 4)

we have (—1 /7 ) = —1. Evaluating the second Legendre symbol in (*):

§] _ _[Z] _ _[1] =—1  [Because 7=1 (mod 3)

7 3 7
Substituting _7] =—1 and —] = —1 into (*) gives
7 -1 3
2= 7]x[?] =(-1)x(-1)=1
p=9 (mod 28) :

Inviewofpz9(mod28) s0 p =28k +9="T(4k +1)+2 = 4(Tk +2) + 1 which

implies that p =2 (mod 7) and p=1 (mod 4). Applying (7.17) we have
2
7

1 ipr:I:l(modS)
1 ipr:bS(modS)

7

p

p

7

—
By (7.17)

-
Because p=2 (1110(1 7)

Using the test for residue 2 which is (7.15):

As 7=-1 (mod 8) so by applying this (7.15) we have

p=-9 (mod 28):

Since p = —9 (mod 28) so p=28k—9="T(4k—1)~2=4(7k—2) ~1 which

implies that p = -2 (mod 7| and p = —1= 3 (mod 4]|. Applying (7.17) we have
p b ( b pplymg
b

-9 _1 9
7 Because pi? (mod 7) - [7] T [7 X [?] (i)

: 2 :
From the previous case we have [?] =1 and from the penultimate case we have

7

p

= —
By (7.17)

[_71] = —1. Putting these into the above calculation () yields
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7

|- —[_71 x[%] = —(-1)x(1)=1.

Hence, we have proven that 7 is a quadratic residue of the primes p which satisfy

the congruence:
p=+1, £3, +9(mod28).

]
(a) We are asked to find the prime factorization of 120* —7 = 14 393 . Using the

result of the above theory we have the prime factor must be of the form

p==+1 +3, +9 (mod 28) . The first few primes of this format are 3, 19, 29,
31, 37 and 37 is a factor of 14 393 because 14 393 = 37 x 389 . Also 389 is prime

because if it has a prime factor it would be less than 19 and the only factors below
19 of the given format is 3 and 19 and none of these are factors of 389 because

they were not factors of 14 393. Hence 14 393 = 37 x 389.
(b) Similarly, we have to factorize 354> —7 = 125 309. Let p be a factor of this

number. Then p=+1, £3, +9 (mod 28). The first few are 3, 19, 29, 31, 37, -— .
By trialling these primes we find that 125 309 = 29 x 4321. We need to find the

prime factors of 4321. First

\/4321J = 65 . There is no point trailing 3 and 19 as

these not factors of 125 309 so they cannot be factors of 4321. The next prime is
29 and we have 4321 = 29 x 149 and 149 is prime. Therefore, the prime
factorization of 354> —7 = 125 309 is 125 309 = 29% x 149

20. We need to show that one of the prime factors of z° 4+ 3 is of the form 12n + 7.
Proof.
Let p > 3 be a prime factor of z° + 3. We have

2 +3=0 (mod p) implies 2° = —3 (mod p).
We have a quadratic congruence z° = —3 (mod p). We need to show that —3 is a
quadratic residue for a prime p of the form 12n 4 7. This implies that
p=7 (mod 12) .

Using Legendre symbols we have

By (7.11)
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1 iprl(mod4)
-1 ipr3(mod4)

-1

p

From this p=7 (mod 12) we have p =12k 4+ 7 = 4(3k5 + 1) + 3. Therefore
p=3 (mod 4)
By (7.11)

By result of question 11 of Exercise 7.3 we have

1if p=1orll (modlz)

3
p] |-1if p=50r7 (mod12)
3
—|=—1 because p=7 (mod 12).
p
Putting these two results |—|= —1 and |—|= —1 into () gives
p p
__3:__1 §:<_1)X<_1):1
p p p

Hence —3 is a quadratic residue of a prime p =7 (mod 12) which implies it is of
the form 12n 4+ 7. As we have a solution to the quadratic congruence
" +3=0 (mod p) so a prime factor of z° + 3 is of the form 12n 4 7. This

completes our proof.

21. We are asked to prove that there are infinite number of primes of the form
3n —1.
Proof.

Suppose there are a finite number of primes of the form 3n —1 and they are all

by Dy s D, (*)
Consider the number N = (3 X p X p, X Xp )2 — 3. Clearly 3 is a factor of N. Let
p > 3 be another prime factor of N and z=3Xp X p, x---Xp then

N=2’ —SEO(modp).
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This quadratic congruence z° = 3 (mod p) has solutions so 3 is a quadratic residue
of p. By question 11(ii) of Exercise 7.1 we have

3is a QR of p <:>p51,11(m0d12).

This implies that p =1 or 11 (mod 12) Jfp = 1(m0d 12) then p =12k +1 but if

all the prime factors of N are of this form p =12k + 1 then N must also be of this

form (you can show by induction that this is indeed the case) but it is not because

N:(3Xp1><p2 ><-~-><pn)2 —3.
So one of the factors must be of the form p = 11(mod 12) which implies

p=12k +11 = 3(4[/<:+1])—1.
Hence p is of the form 3n — 1. Since p is a prime factor of Nso p ‘ N . In view of p
being of the form 3n —1 it must be one of the primes in the above list (*). So

p‘ x implies p‘ 7.
Since p‘ N and p ‘ 2> so from N = (3><p1 X p, ><~-~><pn>2 — 3 we must have
P ‘ 3.

This is impossible because p > 3. We have a contradiction so there are an infinite

number of primes of the form 3n —1.



