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Complete Solutions to Exercise 7.4 
 

1. In each case we use the corollary: 

(7.17)   
   
   

if  1 mod 4 or 1 mod 4

if  3 mod 4 and 3 mod 4

q p q
p p

qq p q
p

                           

  

(a) We are asked to see if  2 12 mod 89x   is solvable. This means we need to 

determine the Legendre symbol 12
89
     

. We know that 212 2 3   so  


2

2

1  because 2  is a quadratic residue

12 2 3 3 31
89 89 89 89 89



                                            
  (�) 

Since  89 1 mod 4  so by using (7.17) on the right-hand side of (�) we have 

 3 89 2 Because 89 2 mod 3
89 3 3
                                  

. 

Applying the test for residue 2, Proposition (7.15): 

 
 

1 if  1 mod 82
1 if  3 mod 8

p
p p

              
  

To 2
3
     

 with  3 3 mod 8  gives 2 1
3
       

. By (�) and this result we have 

12 3 2 1
89 89 3
                             

.  

Since 12 1
89
       

 so 12 is a quadratic non-residue of 89 which implies that 

 2 12 mod 89x   is unsolvable. 

(b) We need to test whether  2 40 mod 101x   is solvable. This means we must 

find the Legendre symbol 40
101
     

. The prime decomposition of 40 is 

340 8 5 2 5    : 
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

 

3 3

2

1

40 2 5 2 5
101 101 101 101

2 2 5
101 101 101

2 5 �
101 101



                               
                           

               

  

We use our normal test for residue 2, Proposition (7.15): 

 
 

1 if  1 mod 82
1 if  3 mod 8

p
p p

              
  

Since  101 5 3 mod 8p     so 2 1
101
       

.  Evaluating the other term in (�): 

 


 


Because 5 1 mod 4 Because 101 1 mod 5

5 101 1 1
101 5 5 

                            
.  

[Remember 1 is a quadratic residue of any odd prime p.] 

Substituting 2 1
101
       

 and 1 1
5
      

 into (�) gives 

   40 2 5 1 1 1
101 101 101
                               

. 

Hence 40 is a quadratic non – residue of 101 so  2 40 mod 101x   cannot be solved. 

(c) We are given the quadratic congruence  2 36 mod 1223x   and since 236 6  so 

 6 mod 1223x  . Therefore  2 36 mod 1223x   is solvable.  

(d) We have to find whether  2 89 mod 197x   is solvable. This means we need to 

calculate the Legendre symbol 89
197
     

. Since  89 1 mod 4  so by (7.17) we have 



Complete Solutions 7.4       Page 3 of 25 

 

 
 
 

89 197 19 Because  197 19 mod 89
197 89 89

89 Because  89 1 mod 4 so applying (7.17)
19
13 Because  89 13 mod 19
19
19 Becau
13

                                  
           
           
      

 
 

se  13 1 mod 4 so applying (7.17)

6 Because  19 6 mod 13
13
2 3 Because  6 2 3
13 13

   
           
                       

  

So far we have  

89 2 3
197 13 13
                           

  (�) 

The residue 2 is tested by using Proposition (7.15): 

 
 

1 if  1 mod 82
1 if  3 mod 8

p
p p

              
  

Since  13 5 3 mod 8   so using this proposition we have 2 1
13
       

.  

Evaluating the other Legendre symbol on the right - hand side of (�): 

 
 

3 13 Because 13 1 mod 4 so applying (7.17)
13 3

1 1 Because 13 1 mod 3
3

                     
            

  

Putting these 2 1
13
       

 and 3 1
13
      

into (�) gives 

89 2 3 1 1 1
197 13 13
                              

. 

Since 89 1
197
       

 so  2 89 mod 197x   is not solvable. 

(e) We need to test whether  2 197 mod 89x   is solvable. We have to find 197
89

     
.  

Since  89 1 mod 4  so by (7.17) we have 197 89
89 197

              
.  
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This was evaluated in part (d) and we had 89 1971
197 89
                

. Hence 

 2 197 mod 89x   is unsolvable.  

 

2. We need to find  
1 1

2 21
p q                  for (i)    1 mod 4 , 3 mod 4p q   and  

(ii)    3 mod 4 , 1 mod 4p q  . 

(i) We are given that    1 mod 4 , 3 mod 4p q   so there are integers k and m 

such that  
4 1 and 4 3p k q m           

Substituting these into the index 1 1
2 2

p q               
 gives 

 

1 1 4 1 1 4 3 1
2 2 2 2

2 2 1 Even Number

p q k m

k m

                                             
      

  

So      1 1 2 2 1
2 21 1 1

p q k m
                       . 

(ii) Similarly, for    3 mod 4 , 1 mod 4p q   by interchanging p and q we have 

 
1 1

2 21 1
p q                  . 

 
3. We need to show that: 

   
 

1 if  1 mod 4 or  1 mod 4

1 if  3 mod 4

p qp q
q p p q

                        
  

Proof. 
We have by the Law of Quadratic Reciprocity: 

 
1 1

2 21
p qp q

q p

                
                

  

So  
1 1

2 21
p qp q

q p

                
                

.  

We found in Example 17 and question 2 above that if  1 mod 4p   or 

 1 mod 4q   then  
1 1

2 21 1
p qp q

q p

                
                 

 and if  3 mod 4p q   then  
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 
1 1

2 21 1
p qp q

q p

                
                  

. 

This is our required result. 
■ 
 

4. We need to prove for 3p   that 
 
 

if 1 mod 4
3 3

if 3 mod 4
3

p p

pp p

                         

.  

Proof. 
To prove this we use the following corollary: 

(7.17)   
   
   

if  1 mod 4 or 1 mod 4

if  3 mod 4 and 3 mod 4

q p q
p p

qq p q
p

                           

 

If our given  1 mod 4p   then by this corollary we have 

3
3
p

p
              

.  

If  3 mod 4p   then by this corollary, we have 

3
3
p

p
               

. 

This proves our required result. 
■ 

 
5. (i) We are required to prove that for prime 3p   we have  

 
 

1 if 1 mod 63
1 if 5 mod 6

p
p p

             
  

Proof. 
Since 3 1 3     so  

3 1 3
p p p

                            
   (�) 

By (7.11) we have  

 
 

1 if 1 mod 41
1 if 3 mod 4

p
p p

             
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By result of question 11(i) of Exercise 7.3 we have 

 
 

1 if 1 or 11 mod 123
1 if 5 or 7 mod 12

p
p p

            
  

We use these two results and (�).  

Consider the two cases (i)  1 mod 6p   and (ii)  5 mod 6p  .  

Case (i) 

Let  1 mod 6p   then there is a positive integer such that 6 1p k  . Now either 

k is even or odd. Let us first take k to be even then 2k m  where m is a positive 
integer. Substituting this into 6 1p k   gives 

   6 2 1 12 1 4 3 1p m m m      . 

Hence  1 mod 12p   and  1 mod 4p   so using the above results and (�): 

3 1 3 1 1 1
p p p

                               
.  

Now let us take k to be odd so 2 1k n   where n is a positive integer. Putting 
this into 6 1p k   gives  

   6 2 1 1 12 7 4 3 1 3p n n n        .  

Therefore  7 mod 12p   and  3 mod 4p   so again using the above results with 

(�): 

   3 1 3 1 1 1
p p p

                                 
.  

In both cases (k is odd and even) we have 3 1
p

       
 if  1 mod 6p  . This proves 

the first part of the result. 
Case (ii) 

Let  5 mod 6p   then there is a positive integer k such that 6 5p k  . Now 

either k is even or odd. Let us first take k to be even then 2k m  where m is a 
positive integer. Substituting this into 6 5p k   gives 

   6 2 5 12 5 4 3 1 1p m m m       .  

Hence  5 mod 12p   and  1 mod 4p   so using the above results and (�): 

 3 1 3 1 1 1
p p p

                                 
. 
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Now let us take k to be odd so 2 1k n   where n is a positive integer. Putting 
this into 6 5p k   gives  

   6 2 1 5 12 11 4 3 2 3p n n n        .  

Therefore  11 mod 12p   and  3 mod 4p   so again using the above results with 

(�): 

 3 1 3 1 1 1
p p p

                                 
.    

In both cases (k is odd and even) we have 3 1
p

        
 if  5 mod 6p  . This proves 

the second part of the result. 

Therefore, we have 
 
 

1 if 1 mod 63
1 if 5 mod 6

p
p p

             
. This is our required result. 

■ 
(ii) We use the result of part (i) to factorize each of the integers in this part. 
(a) We are asked to find the prime factorization of 2104 3 10 819  . Since our 

integer is of the form 2 3n   so the odd prime factors p of this 2104 3  must 

satisfy  1 mod 6p  . The first few primes are 7, 13, 19, 31, 37, 43, ---. Dividing 

10 819  by each of these we find that  

10 819 31 349  .  

We have 349 18    
 and none of the primes in the above list below 18 go into 349, 

so 349 is prime. Hence 10 819 31 349  . 

(b) We need to find the prime factorization of 2236 3 55 699  . Let p be a prime 

factor of 2236 3  then  1 mod 6p   and the primes of this form are 7, 13, 19, 31, 

37, 43, 61, 67, 73 --- and we find that  
55 699

763 55 699 73 763
73

    . 

 We just need to factorize 763 but let us first see which primes we need to test. We 

have 763 27    
 and there are no primes in the above list which are below 27 and 

go into 763. How do we know this? 
 Because if there was a smaller prime then it would also be a factor of 55 699 and 
the first prime to be a factor of 55 699 is 73. Therefore 763 is prime and 
55 699 73 763  . 
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(c) We are asked to factorize 2362 3 131 047  . Let p be a prime factor of this 

number then  1 mod 6p  . The first of these is 7 and we find that  

131 047
18 721

7
 .  

From this we have 18 721 136    
. We need to now try prime factors which satisfy 

 1 mod 6p   and first few are 7, 13, 19, 31, 37, 43, 61, 67, 73, 79 and 97 which is a 

factor of 18 721 because 18 721 97 193  . Now 193 is prime so the prime 

factorization of 131 047 7 97 193   . 

 
6. We are required to prove that prime factors of the integer 2 1n n   are of the 
form 6 1k  . 
Proof. 
Let p be an arbitrary prime factor of the given integer 2 1n n  . We have 

 2 1 0 modn n p   .  

By using the given hint in the question consider the integer 

   2 2 22 1 4 4 1 4 1 3n n n n n        .  

Using the first result we have 

   
 

 2 2

0 mod

2 1 4 1 3 0 3 3 mod
p

n n n p


        


 (*) 

Let 2 1x n   and substituting this into (*) yields 

 2 3 modx p   

This is a quadratic congruence. Hence we need to find for which primes p is the 

Legendre symbol 3 1
p

       
 because when the Legendre symbol is equal to 1 we have 

a quadratic residue.  
By the result of the previous question: 

 
 

1 if 1 mod 63
1 if 5 mod 6

p
p p

             
  

Hence the prime p must be of the form  1 mod 6p   so 6 1p k   for some 

positive integer k. 
■ 
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7. We are asked to prove that there are infinitely many primes of the form 8 1k  . 
Proof. 
We use the given hint and suppose there are finitely many primes of the form 
8 1k   which we can denote as 1 2, , , kp p p . Let 1 2 kn p p p     and 

consider the integer  24 2N n  . Clearly N is composite because 2 is factor of N. 

Let p be a prime factor greater than 2 (or an odd prime) of N. Then 

   2
4 2 0 modN n p   .  

Let 4x n  then we have  

   2 22 0 mod 2 modN x p x p       

This  2 2 modx p  and is solvable because 4x n  so 2 1
p
      

. By question 3(i) of 

Exercises 7.3: 

2 is a quadratic residue of prime p    1 mod 8p   .  

we have  1 mod 8p   , which implies that  

8 1p k   or 8 1p k  .  
If all the prime factors greater than 2 of N are of the form 8 1k   then the product 
of this is also of the form 8 1m   (this can be shown by induction) but this is 

impossible because  24 2N n  . Hence N must have a prime factor of the form 

8 1p k  . Clearly this 8 1p k   is not one in the above list 1 2, , , kp p p . Why 

not? 

If it is then p n  so  24p n  and p N  and since  24 2N n   so  

2p .  

This is impossible because p is an odd prime. 
Hence there are infinitely many primes of the form 8 1k  . 

■ 
 

8. We need to find the given sum 
   1 2 1 2

1 1

q p

k k

k p k q
q p

 

 

             
   for the primes 17p   

and 13q  . Substituting these 17p   and 13q   into 1
2

p   and 1
2

q   

respectively gives 



Complete Solutions 7.4       Page 10 of 25 

 

1 17 1 8
2 2

p     and 1 13 1 6
2 2

q    .  

Evaluating the sum separately: 
6

1

17 1 17 2 17 3 17 4 17 5 17 6 17
13 13 13 13 13 13 13

17 34 51 68 85 102
13 13 13 13 13 13
1 2 3 5 6 7

k

k


                                                               
           
                                      

     



8

1

24
13 1 13 2 13 3 13 4 13 5 13 6 13 7 13 8 13

17 17 17 17 17 17 17 17 17
13 26 39 52 65
17 17 17 17 17

k

k



                                                                                   

        
                         


78 91 104
17 17 17

0 1 2 3 3 4 5 6 24

      
                       

        

  
Adding both these summations gives  

6 8

1 1

17 13 24 24 48
13 17k k

k k
 

                
    

Drawing the graph gives: 

 
The number of lattice points shown in this graph is 6 8 48   which is given by 
the above sum. 
 
9. (See Example 17.) Consider the two different cases: 

(a)    1 mod 4 or 1 mod 4p q  .  
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(b) Both    3 mod 4 and 3 mod 4p q  .  

Case (a)  

Let  1 mod 4p   then there exists a positive integer k such that 4 1p k  . 

Putting this into the index of Law of Quadratic Reciprocity 1 1
2 2

p q               
 we 

have 

1 1 4 1 1 1 12 Even because  is odd
2 2 2 2 2

p q k q qk q
                                                                 

  

   
1 1 122 2 2

1 1 1 Because index is even
p q qk

p q
q p

                                
                            

  

Since 1p q
q p
               

 so 1p q
q p
               

 or 1p q
q p
                

. Either way p q
q p
              

. 

We can present the same argument with  1 mod 4q  . 

Case (b) 

Let    3 mod 4 and 3 mod 4p q   then there are positive integers k and m such 

that 

4 3p k   and 4 3q m  .        

Substituting this into the index of the Law of Quadratic Reciprocity yields 

   

1 1 4 3 1 4 3 1
2 2 2 2

4 2 4 2 2 1 2 1 Odd number
2 2

p q k m

k m k m

                                             
                          

  

Therefore    2 1 2 1
1 1

k mp q
q p

                  
 because   2 1 2 1k m   is odd. 

We have 1 and 1p q
q p
                

 or 1 and 1p q
q p
                

. Hence p q
q p
               

. 

This completes our proof. 
■ 
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10. We need to prove that 
 

 
1 2

1
mod 2

p

k

ka g
p





 
    

  where p a  and g be the number 

of negative residues defined in Gauss’s Lemma. 
Proof. 

Let S be the set of the product of k and a where 11, 2, 3, ,
2

pk   : 

1, 2 , 3 , 4 , ,
2

pS a a a a a
              

 .  

The integer g is defined as the number of negative residues in this list, these are the 

ones which are greater than 1
2

p  . 

We can write each of these ka as a residue of modulo p which lies between 1
2

p      
 

and 1
2

p      
. We can illustrate this on a modulo p clock: 

 
Denoting each of these residues by rk, that is  

 modkka r p .  

If rk is positive then ka is one of the least positive residues in the set  

11, 2, 3, 4, ,
2

pT
              

   

We need to consider the floor function ka
p

 
 
  

. So dividing these integers in the set T 

by p and then evaluating the floor function gives 

 1 2 3 4 1' , , , , , 0, 0, 0, 0, , 0
2

pT
p p p p p

                                            
    

If rk is negative, then ka  is one of the negative residues in the set  

Positive residue 
Negative residue 



Complete Solutions 7.4       Page 13 of 25 

 

11, 2, 3, 4, ,
2

pU
                  

   

Similarly finding the floor function ka
p

 
 
  

 gives 

 1 2 3 4 1' , , , , , 1, 1, 1, 1, , 1
2

pU
p p p p p

                                                      
    

Evaluating the sum 
 1 2

1

p

k

ka
p





 
 
  

  gives 

 

 

 

1 2

1

Number of negative residues

2 3 1
2

0 0 1 1 1 0 0

mod

p

k

g

ka a a a p a
p p p p p

g p







                                              
        



 

 


  

Taking modulo 2 we have 
 

 
1 2

1
mod 2

p

k

ka g g
p





 
      

   

This is our required result. 
■ 

 

11. Substituting 13p   and 16a   into 
 1 2

1

p

k

ka
p





 
 
  

  gives 

6

1

16 16 32 48 64 80 96
13 13 13 13 13 13
1 2 3 4 6 7 23

k

k
p

             
                                            

      

   

We have 16, 32, 48, 64, 80, 96ka  , Writing these integers as residues between 

6  and 6 of modulo 13 gives 

 16 3, 32 6, 48 4, 64 1, 80 2, 96 5 mod 13ka          

Hence 2g  . We have  23 2 mod 2 . Why doesn’t Lemma (7.20) work in this 

case? 
Because 16a   but in the Lemma it states that let ‘a also be odd’. 
 
12. We need to prove that odd prime divisors of the integer 2 1n   are of the form  
4 1k  . 
Proof. 
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Let p be an odd prime divisor of 2 1n  , that is  

 2 1 0 modn p   implies that  2 1 modn p .  

By question 6 of Exercises 7.1: 

1  is a QR of an odd prime p  1 mod 4p  .  

The quadratic congruence  2 1 modn p  has solutions so  1 mod 4p    which 

implies that 4 1p k  . 
■ 

 
13. We need to prove that there are an infinite number of primes of the form 
3 1m  . 
Proof. 
Suppose there are a finite number of primes of the form 3 1m   which we can write 
in a list as 

1 2 3, , , , np p p p         

Consider the integer 

 21 2 33 3nN p p p p       .  

N is composite because 3 is a factor of N. This implies that we must have a prime 
factor, 3p   say of N. By using modular arithmetic we have 

       2 2

1 2 3 1 2 33 3 0 mod 3 3 modn np p p p p p p p p p                  

Let 1 2 33 np p p p x       then the above can be written as 

 2 3 modx p .  

This is a quadratic congruence. We know it has solutions because 

1 23 nx p p p     so it is solvable. By the result of question 5: 

 
 

1 if 1 mod 63
1 if 5 mod 6

p
p p

             
  

We have  1 mod 6p   so 6 1p k  . Writing this as a factor of 3 gives 

 3 2 1p k    

We have  3 2 1p k   which is of the form 3 1m   and is a prime factor of N, that 

is p N .  Since p is of the form 3 1m   so it must be one in the above finite list  

1 2 3, , , , np p p p .  
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From this we have  21 2 33 np p p p p     .  

Since  

 21 2 33 3nN p p p p         

And p N  and  21 2 33 np p p p p      so 3p  this is impossible because  

3p  . We have a contradiction so there are an infinite number of primes of the 
form 3 1m  . 
 

14. (a) We are required to find x in  99725 mod 1993x  given that 1993 is prime. 

Using Euler’s Criterion (7.5): 

a is a quadratic residue of  p     
1

2 1 mod
p

a p


   

We have 225 5a    so clearly 5 is a quadratic residue of 1993 so by (7.5) we have 

 
1993 1

996225 25 1 mod 1993


    

Multiplying both sides of this result  99625 1 mod 1993  by 25 yields 

 996 99725 25 25 25 mod 1993     

Hence  25 mod 1993x  .  

(b) We are asked to find the least positive residue x in  99726 mod 1993x . The 

prime decomposition of 26 is 2 13 . We need to check that if 2 and 13 are 
quadratic residues of 1993 because  

26 2 13
1993 1993 1993
                           

   (*) 

For 2 we use (7.15) 

 
 

1 if  1 mod 82
1 if  3 mod 8

p
p p

              
  

Since  1993 1 mod 8  so 2 1
1993
      

 which implies that 2 is a quadratic residue of 

1993. 

We need to find the other Legendre symbol 13
1993
     

. Since  13 1 mod 4  so by  
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(7.17)   
   
   

if  1 mod 4 or 1 mod 4

if  3 mod 4 and 3 mod 4

q p q
p p

qq p q
p

                           

 

We have 

 
2

2

13 1993 4 Because  1993 4 mod 13
1993 13 13

2 1 Because  2   is a quadratic residue
13

                                  
          

  

Substituting these into (*) yields 

26 2 13 1 1 1
1993 1993 1993
                              

.  

Hence 26 is a quadratic residue of 1993 so by Euler’s Criterion 

 
1993 1

996226 26 1 mod 1993


  .  

Therefore  99726 26 mod 1993  or  26 mod 1993x  .  

 

15. We are required to prove that if 8 1p k   then 
1

22 1
p

p
      

. 

Proof. 

We are given 8 1p k   therefore  1 mod 8p  . By  

 
 

1 if  1 mod 82
1 if  3 mod 8

p
p p

              
  

We have 2 1
p
      

 which implies that 2 is a quadratic residue of p. By Euler’s 

Criterion (7.5): 

a is a quadratic residue of  p     
1

2 1 mod
p

a p


   

Using this criterion with 2a   we have  

   
1 1

2 22 1 mod 2 1 0 mod
p p

p p
 

    .  

Since  
1

22 1 0 mod
p

p


   so we conclude that 
1

22 1
p

p
      

. This completes our 

proof. 
■ 
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16. We are asked to show that 2a a
p p

              
 provided  1 mod 4p  . 

Proof. 
Factorizing 2 2a a   so  

2 2a a
p p p

                           
  (�) 

We are given that  1 mod 4p   therefore by (7.15): 

 
 

1 if  1 mod 82
1 if  3 mod 8

p
p p

              
  

This implies that if  1 mod 8p   which in turn implies that 

 8 1 4 2 1p k k     then 

2 1
p
      

.     

Substituting this into (�) gives 2 2 1a a a a
p p p p p

                                                      
.  

This completes our proof. 
■ 

17. We need to show that if  1 mod 4p   then 

1
2

1
0

p

a

a
p





       . 

Proof. 

We need to show that 

1
2

1

1 2 3 1 0
2

p

a

a p
p p p p p





                                                         . 

From question 7(a) of the Exercise 7.1 we have the following result: 

If a is a quadratic residue then p a  is a quadratic residue   1 mod 4p  . 

Consider the set 

First half of the least positive residues modulo Last half of the least positive residues modulo 

1 11, 2, 3, , , , , 3, 2, 1
2 2

p p

p pS p p p

           

 
 

  

The above result claims that if 1 is a quadratic residue then so is 1p   and if 2 is a 
quadratic residue so is 2p   and so on. 
This implies that the quadratic residues in the above list are symmetrical. By 
Proposition (7.4): 
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There are exactly 1
2

p   quadratic residues and 1
2

p   quadratic non-residues of p. 

Since the list in S is symmetrical so half the residues in the first half, that is 

First half of the least positive residues modulo 

11, 2, 3, , ,
2

p

p 


  

must be quadratic residues and half of these must be quadratic non-residues. By the 
definition of the Legendre symbol (7.7): 

1 if    is a quadratic residue of 
1 if    is a quadratic non-residue of 

a pa
a pp

         
  

Therefore  
1

2

1

1 2 3 1 0
2

p

a

a p
p p p p p





                                                           

This is our required result. 
■ 

 
18. We are given the following table: 

Prime p 3 7 11 13 17 19 23 29 31 

 5 p   1   1   1 1   1   1 1   1 1 

Prediction is  

 
 

1 if  1 mod 55
1 if  2 mod 5

p
p p

              
     

We need to prove this. 
Proof. 
We need to consider the four different cases: 

(i)  1 mod 5p    (ii)  1 mod 5p    

(iii)  2 mod 5p    (iv)  2 mod 5p   

In each case we use the popular corollary: 

(7.17)   
   
   

if  1 mod 4 or 1 mod 4

if  3 mod 4 and 3 mod 4

q p q
p p

qq p q
p

                           

 

Since  5 1 mod 4  we have 5
5
p

p
              

. 
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Case (i): 

Applying this to  1 mod 5p  : 

 5 1 1 Because 1 mod 5
5 5
p p

p
                                   

  

Case (ii): 

This time  1 mod 5p   so  

 5 1 Because 1 mod 5
5 5
p p

p
                                  

  

Using  

(7.11)    
 
 

1 if  1 mod 41
1 if  3 mod 4

p
p p

             
  

We have 5 1 1
5p

               
 because  5 1 mod 4 . 

Case (iii): 

We consider the case  2 mod 5p  : 

 5 2 Because 2 mod 5
5 5
p p

p
                                  

  

Applying the following to  2 5 : 

 
 

1 if  1 mod 82
1 if  3 mod 8

p
p p

              
  

In view of  5 3 mod 8  we have 

5 2 1
5p

                
.  

Case (iv): 

This time we have  2 mod 5p   so 

 5 2 Because 2 mod 5
5 5
p p

p
                                   

  

Therefore  

 
 

1 by (7.11) 1 by (7.15)

5 2 1 2 1 1 1
5 5 5p

 

                                             
  

We have considered all four cases and shown our predicted formula. 
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■ 
To factorize each of the given integers we need to use our predicted formula: 

 
 

1 if  1 mod 55
1 if  2 mod 5

p
p p

              
 

(a) We are asked to factorize 2104 5 10 811  . Let p be a prime factor of  

10 811 therefore p satisfies  1 mod 5p   . The first couple of primes of this 

format are 11, 19 and we find that 10 811 19 569  . Also 569 23    
 so we only 

need to test if 19 goes into 569 but it doesn’t so 569 is prime. Hence  
10 811 19 569  . 

(b) Like part (a) we must find the prime factorization of 
2504 5 254 011   

Let p be a prime factor of this number then  1 mod 5p    and testing primes of 

this format 11, 19, 29, 31, 41, ---. Clearly 11 is not a factor because adding the 

digits of 254 011 gives 1 1 0 4 5 2 1       and 11  1 . Trying 19 we have  

254011 19 13 369   

Also 13 369 115    
 so we need to test primes up to 115. Again 11 cannot be a 

factor as it is not a factor of the original number. We find that 19 is also not a 

factor. The next prime after 19 of the format  1 mod 5p    is 29 and  

13 369 29 461   

Also 461 is prime because we have tested primes up to 29 and 461 21    
. Hence 

254011 19 29 461   . 
 

19. We need to prove: 

 7 1 if  1, 3, 9 mod 28p
p
          

    

Proof. 
Arguing along similar lines to solution of previous question we have the following 
cases: 

 1 mod 28p  : 
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Since  1 mod 28p   so    28 1 7 4 1 4 7 1p k k k       which implies that 

 1 mod 7p   and  1 mod 4p  . Applying (7.17) we have 


 


By (7.17) Because 1 mod 7

7 1 1
7 7p

p
p 

                            
.    

 1 mod 28p  : 

Since  1 mod 28p   so  28 1 7 4 1p k k     which implies that 

 1 mod 7p   and  1 3 mod 4p   : 


 

  
By (7.17) Because 1 mod 7

7 1 �
7 7p

p
p 

                             
   

Now we use the test for residue 1  which is  

(7.11)  
 
 

1 if  1 mod 41
1 if  3 mod 4

p
p p

             
  

As  7 3 mod 4  so applying (7.11) gives  1 7 1  . Substituting this into (�) 

yields 

 7 1 1 1
7p

                  
.     

 3 mod 28p  : 

In view of  3 mod 28p   so    28 3 7 4 3 4 7 3p k k k       which implies 

that  3 mod 7p   and  3 mod 4p  . Applying (7.17) we have 


 



  
By (7.17) Because 3 mod 7

by (7.17)

7 3
7 7

7 7 1 1 Because 7 1 mod 3
3 3 3

p

p
p 

                             
                                      

  

 3 mod 28p  : 

In view of  3 mod 28p   so    28 3 7 4 3 4 7 3p k k k       which implies 

that  3 mod 7p   and  3 1 mod 4p   . Applying (7.17) we have 


 


By (7.17) Because 3 mod 7

7 3 1 3 (*)
7 7 7 7p

p
p 

                                                      
  

Evaluating each of the Legendre symbols on the right - hand side of (*). 
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As  7 3 mod 4  so by applying  

(7.11)  
 
 

1 if  1 mod 41
1 if  3 mod 4

p
p p

             
  

we have  1 / 7 1   . Evaluating the second Legendre symbol in (*): 

 3 7 1 1 Because 7 1 mod 3
7 3 7
                                      

  

Substituting 1 1
7

        
 and 3 1

7
       

 into (*) gives 

   7 1 3 1 1 1
7 7p

                                
.  

 9 mod 28p  : 

In view of  9 mod 28p   so    28 9 7 4 1 2 4 7 2 1p k k k         which 

implies that  2 mod 7p   and  1 mod 4p  . Applying (7.17) we have 


 


By (7.17) Because 2 mod 7

7 2
7 7p

p
p 

                           
  

Using the test for residue 2 which is (7.15): 

 
 

1 if  1 mod 82
1 if  3 mod 8

p
p p

              
  

As  7 1 mod 8  so by applying this (7.15) we have 

7 2 1
7p

               
.  

 9 mod 28p  : 

Since  9 mod 28p   so    28 9 7 4 1 2 4 7 2 1p k k k         which 

implies that  2 mod 7p   and  1 3 mod 4p   . Applying (7.17) we have 


 


By (7.17) Because 2 mod 7

7 2 1 2
7 7 7 7p

p
p 

                                                         
 (�) 

From the previous case we have 2 1
7
      

 and from the penultimate case we have 

1 1
7

        
. Putting these into the above calculation (�) yields  
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   7 1 2 1 1 1
7 7p

                                 
.  

Hence, we have proven that 7 is a quadratic residue of the primes p which satisfy 
the congruence: 

 1, 3, 9 mod 28p     .      

■ 
(a) We are asked to find the prime factorization of 2120 7 14 393  . Using the 

result of the above theory we have the prime factor must be of the form 

 1, 3, 9 mod 28p     . The first few primes of this format are 3, 19, 29, 

31, 37 and 37 is a factor of 14 393 because 14 393 37 389  . Also 389 is prime 

because if it has a prime factor it would be less than 19 and the only factors below 
19 of the given format is 3 and 19 and none of these are factors of 389 because 
they were not factors of 14 393. Hence 14 393 37 389  .  

(b) Similarly, we have to factorize 2354 7 125 309  . Let p be a factor of this 

number. Then  1, 3, 9 mod 28p     . The first few are 3, 19, 29, 31, 37, --- . 

By trialling these primes we find that 125 309 29 4321  . We need to find the 

prime factors of 4321. First 4321 65    
. There is no point trailing 3 and 19 as 

these not factors of 125 309 so they cannot be factors of 4321. The next prime is 
29 and we have 4321 29 149   and 149 is prime. Therefore, the prime 
factorization of 2354 7 125 309   is 2125 309 29 149   

 
20. We need to show that one of the prime factors of 2 3x   is of the form 12 7n  . 
Proof. 
Let 3p   be a prime factor of 2 3x  . We have 

   2 23 0 mod implies 3 modx p x p   .  

We have a quadratic congruence  2 3 modx p . We need to show that 3  is a 

quadratic residue for a prime p of the form 12 7n  . This implies that 

 7 mod 12p  . 

Using Legendre symbols we have 

3 1 3
p p p

                            
  (�) 

By (7.11) 
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 
 

1 if 1 mod 41
1 if 3 mod 4

p
p p

             
  

From this  7 mod 12p   we have  12 7 4 3 1 3p k k     . Therefore  

 3 mod 4p          

By (7.11) 

1 1
p

        
        

By result of question 11 of Exercise 7.3 we have 

 
 

1 if 1 or 11 mod 123
1 if 5 or 7 mod 12

p
p p

            
  

3 1
p
       

 because  7 mod 12p  .  

Putting these two results 1 1
p

        
 and 3 1

p
       

 into (�) gives 

   3 1 3 1 1 1
p p p

                                 
  

Hence 3  is a quadratic residue of a prime  7 mod 12p   which implies it is of 

the form 12 7n  . As we have a solution to the quadratic congruence 

 2 3 0 modx p   so a prime factor of 2 3x   is of the form 12 7n  . This 

completes our proof. 
■ 

 
21. We are asked to prove that there are infinite number of primes of the form 
3 1n  . 
Proof. 
Suppose there are a finite number of primes of the form 3 1n   and they are all 

1 2, , , np p p   (*) 

Consider the number  21 23 3nN p p p      . Clearly 3 is a factor of N. Let 

3p   be another prime factor of N and 1 23 nx p p p      then 

 2 3 0 modN x p   .  
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This quadratic congruence  2 3 modx p  has solutions so 3 is a quadratic residue 

of p. By question 11(ii) of Exercise 7.1 we have 

3 is a QR of p  1, 11 mod 12p  . 

This implies that  1 or 11 mod 12p  . If  1 mod 12p   then 12 1p k   but if 

all the prime factors of N are of this form 12 1p k   then N must also be of this 
form (you can show by induction that this is indeed the case) but it is not because  

 21 23 3nN p p p      . 

So one of the factors must be of the form  11 mod 12p   which implies 

 12 11 3 4 1 1p k k        .  

Hence p is of the form 3 1n  . Since p is a prime factor of N so p N . In view of p 

being of the form 3 1n   it must be one of the primes in the above list (*). So  

p x   implies 2p x . 

Since p N  and 2p x  so from  21 23 3nN p p p       we must have  

3p .  

This is impossible because 3p  . We have a contradiction so there are an infinite 
number of primes of the form 3 1n  . 

■ 
 

 

 

 


