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Complete Solutions to Supplementary Problems 3

1. (a) Since the reminder after dividing 2015 by 10 is 5 so 2015=5 (mOd 10) is
true.

(b) 266 divided by 7 gives 0 reminder so 266 =1 (mod 7) is false.
(c) 17 divided by 12 gives reminder 5 not —H so 17 =-9 (mod 12) is false.
(d) -11=-57 (mod 34) implies that

-11-57=-68=-2x34
Hence —11=-57 (mod 34) is true.

(e) Since every integer a divided by 1 gives reminder zero so a =0 (mod 1) is

true.

2. We can use the following formula in each of the cases:

g] $0+3[£],...7 zo+(g_1)[ﬁ] (mod n)

y T, +2
g g

(3.17) z = T,, T, + [%

(a) We are given the equation 7z =21 (mod 15) . The ng(7, 15) =1 and
clearly 1‘ 21 so we have a unique solution.

By inspection we have T =3 (mod 5) because
7x3 =21 (mod 15)
This is the only solution to the given congruence.
(b) This time we need to solve 12z =24 (mod 27). The ng(12, 27) =3 and

3| 24 so we have 3 incongruent solutions to the given linear congruence.

By inspection one of the solutions is %, =2 (HlOd 27). Using the (3.17) formula

with n =27, ¢ =3 we have

r=2 2+2—37(1) and 2+%(2)52, 11, 20(mod27)

Our three incongruent solutions are £ =2, 11, 20 (mod 27) .
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(c) We are asked to solve the equation, 10z =20 (mod 30). The
gcd(l(), 30) =10 and as 10‘ 20 we have 10 incongruent solutions. Clearly

T, = 2 (mod 30) is a solution. The others are found by substituting

n_ zl)’_g =3 and x, =2 into the formula (3.17):
g

r=2 2+3 2+(2x3), 2+(3x3), -, 2+ (9x3) (modSO)
=2 5 8 11, ---, 29 (mod 30)

(d) Solving the given equation 37 =2 (mod 6) we have the ng(3, 6) =3 but

3 /~/ 2 so there are no solutions to this equation.

(a) Let z be the multiplicative inverse of 9 (HlOd 12) . Then z satisfies
or=1 (mod 12)
By trialling some z values we have =9 because

5><5=25El(m0d12)
Hence the multiplicative inverse of 5 (mod 12) is 5 (mod 12).
(b) Similarly we have to find  such that
Tr=1 (mod 15)
Trialling =2 gives 7x2=14=-1 (mod 15) . Multiplying this by —1 gives
Tx(-2)=1 = 7x13 El(mod 15)
Hence the multiplicative inverse of 7 (mod 1) is 13 (mod 15).

(c) We need to find the multiplicative inverse of 10 (mod 27). This implies that

we need to find z such that
10x =1 (mod 27)
Trialling z=11 we get
1011 =110 =2 (mod 27) (1)

Easier to deal with 2 rather than 10. We know 2x14 =28 and 28 =1 (mod 27)

. Multiplying the congruence in (I) by 14 gives
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10x11x14=2x14 =1 mod 27)
Now 11x14=154=19 (mod 27) . Putting this into the above calculation yields
10x11x14 =10x19 =1 mod 27)
Hence the multiplicative inverse of 10 (mod 27) is 19 (mod 27),
(d) We need to find the inverse of 6 (mod 15) . Let x be the inverse then
62=1(mod 15)
This linear congruence has no solution because ng(G, 15) =3 and 3 / 1.
This implies that 6 (mod 15) has no inverse.
(¢) We need to find = such that 7z =1 (mod 12). Well we know that
7(5) =35 =1 (mod 12)
Multiplying this by —1 gives
7(-5) =(1)(-1) =1 (mod 12)
Hence =-5=7 (mod 12)_
(f) This time we need to solve 11z =1 (mod 12) . Note that 11=-1 (mod 12) :
Using this on 11z =1 (mod 12) we have
Hz=(-1)z=1(mod12) = z=-1=11(mod12)
The multiplicative inverse of 11(mod 12] is 11 (mod 12).
() We are asked to find the multiplicative inverse of 9 (mod 13) . This means
we need to find @ such that 92 =1(mod 13). Since 9 =4 (mod 13) we have
Ir=-dzr=1 (mod 13)
Multiplying this —4z = 1 (mod 13) by —1 yields
dr=-1=12 (mod 13) implies that x =3 (mod 13)

Hence the inverse of 9 (HlOd 13) is 3 (mod 13) or 9 = 3(m0d 13).
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(h) We are asked to find the multiplicative inverse of 9 (mod 15). Note that

ng(9, 15) =3 therefore 9 (mod 15) has no inverse.

. It is all the residues which have a gcd greater than 1 with 12:
gcd(?, 12) -2 gcd(3, 12) -3, gcd(4, 12) = 4, gcd(ﬁ, 12) -6,
gcd(8, 12) = 4, gcd(g, 12) =3 and gcd(lO, 12) =2
Therefore there are no multiplicative inverses for

23,4689 and 10(mod 12)

. We are asked to factorize 48351. The ceiling of V48351 is

[\/@W _ 220

Finding the difference between 220 squared and 48351 gives

220 — 48351 = 49 = 7°
Rearranging this as a difference of two squares we have

48351 = 220° — 7% = (220 + 7) x (220 - 7) =227 x 213
Hence 48351 =227 x213. Clearly 213 is divisible by 3 so

213
? =71 and 71 is prime.

We also need to find the prime factors of 227. Let p be a prime factor of 227
then

pSif/ﬁJzB

The only primes below 15 are 2, 3, 5, 7, 11 and 13. Clearly 2, 3 and 5 do not go
into 227. Also 227 is not divisible by 7, 11 and 13 (check this for yourself),
therefore 227 is prime.

The prime decomposition of 48 351 is 3 x 71 x 227 .

(a) The first statement 7 =0 (mod pa) then n =0 (mod paﬂ) is false because
32=0 (mod 25) but 3240 (mod 26) as 32=32 (mod 26)

(b) This statement is true; p" =0 (mod n) then "' =0 (mod n) :
Proof.
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We are given that p' =0 (mod N) Using Corollary (3.7):
T=y (mod n) implies Zc =yc (mod n)

On p" =0 (mod n) by multiplying this by p gives
™ =p =0 (mod n)

We have our required result.

(c) This statement is also true; p* =0 (mod n) then p"" =0 (mod n)
Proof.

We assume p' =0 (mod n) By the definition of congruence we have
p* = kn for some integer k.
Using the rules of indices we can write p* " = p'p” (mod TL) Substituting the
above p" =kn in this gives
p" = pp" =knp™ =0 (mod n) [Because kn is a multiple of n}

This completes our proof.

(d) The given statement p" =0 (mod n) and p" =0 (mod m) then
pmm(m ') =0 (mod m + n) is false because 2° =0 (mod 32) and

2 =0 (mod 128) but 2 7 =25 = 3240 (mod 128 + 32) .

(a) We need to prove; if n is odd then n’ =1 (mod 8).
Proof.
Let n be an odd integer. By the division algorithm with b =8 we have
n =8q+r where 0<r <8
Since n is odd so the reminder r can only be 1, 3, 5 or 7.
Squaring this n = 8¢ + r yields
n’ =(8q+7“)2 =(8q)2 +(2><8q><r)+7"2
= 8[8q2 + QqT] +7r°=8m +1r> where m = 8¢° +2¢qr
We have n? = 8m +r> where 7 =1, 3, 5, 7. Writing this as a congruence we

have
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' =8m+r'=0+7r" =1 (mod 8)
Substituting the above values of r into this yields

== 3 5 =11 1,1(mod 8)

Hence if n is odd then n° =1 (mod 8). This completes our proof.

(b) We need to prove for any n we have n’ =0, 1, 6 (mod 7) )

Proof.
In question 10 of the Supplementary Problems 1 we showed that:
The cube of any integer is of the form 7k or 7k £ 1. Let n be any integer then

from this statement we have n® =7k, 7k+1.

Representing this n® = 7k, 7k +1 as a congruence with modulo 7 gives

n' =7k Thkt1=0, £1=0, 1, 6 (mod7)

(c) We are asked to prove for any n we have n'=0 or 1 (mod 5).

Proof.

Let n be any integer. Then using the division algorithm with b =5 we have
n =5q+r where 0<r<5.

Expanding the fourth power of n by the binomial theorem we have:

n' = (5(] + 7“)4 = (5(])4 + 4(5q)3 r+ 6(5q)2 r’ + 4(5q) r® 4t

=5m because this is a multiple of 5

=5m+ 7'
Writing this as a congruence with modulo 5 yields
n' =5m+r'=0+r' =1 (mod5)
From above we have 0 <7 <5 so r can only have the values 0, 1, 2, 3 or 4.
Putting these into the above yields
n'=r' =0, 1*, 2%, 3%, 4°

=0, 1, 16, 81, 256=0,1,1, 1, 1(mod 5)

Hence n' =0 or 1 (mod 5) . This completes our proof.

8. We apply the division algorithm with « = » and b=4.



10.
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Proof.
Let n be an integer. Then by the division algorithm we can write this as
n=4q+r 0<r<4
Squaring this number gives
n’ = (4(] + r)2 = 16¢° + 8qr + r*
= 4(4q2 + 2qr> + 7> =4m + 1> where 4¢° +2qr =m
Note that r can only have values 0, 1, 2 or 3. Squaring each of these gives
0°=0,1"=1,2>=4 and 3*° =9
Substituting this into the above yields
n®=4dm+r> =4m, 4m +1, 4m +4, 4m + 9
Writing each of these as congruence in modulo 4:
n® =4m, 4m +1, 4m+4, 4m+9
=0, 10, 1 (mod 4)

Hence a square number is only congruent to 0 or 1 modulo 4.

]
We need to prove if a=b (mod n) and ¢>0 then ac=bc (mod nC) .
Proof.
From a=b (mod n) we have

a —b = kn for some integer k.
Multiplying this by ¢ gives
ac —bc = knc
As we have ¢ >0 therefore ac =bc (mod TLC). This is our required result.
[

We are required to prove that if a=b (mod n) and d‘ a, d‘ b and d‘ n
where d is a positive integer then % = % [mod %j .

Proof.
From a=b (mod n) we have a —b = kn for some integer k. Dividing this

a—b=kn by dyields



11.

12.

13.
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a_b_.n

d d d

a b n
We are given that d‘ a, d‘ b and d‘ N so these E, E and E are all

integers which implies we have % = % [mod %J . This completes our proof.

n
We are asked to prove that ¢’ =a (mod p) then o’ =1 (mod p) provided
P /~/ a.
Proof.
We can write the given congruence @’ =a (mod p) as

a(ap_l) = a(l) (mod p)
Applying Cancellation Law (3.12):
If cx = cy(mod p) and prime p does not divide into ¢ then £ =y (mod p).
To a(ap_l) = a(l) (mod p) gives @’ =1 (mod p)_
n

Let £=5 and the prime p =2 then
5 =1 (mod 2)

We have both 5-1=0(mod 2) and 5+1=0(mod 2).

(a) We apply the Chinese Remainder Theorem to solve
xsl(mod3), xE2(mod4), IEB(mOd 5)
The formula is:
(3.23) r=aNz +aNx, +aNz, +--+aNrT
Since we are given three equations so we use this formula with 7 = 3:

T = alNlas1 + a2N2£E2 + a3N3x3
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In our case N, =20, N, =15 N, =12.

We need to find the X;’s which are given by Nz, =1 (mod TL,C) for
k=1 2 and 3:

20z, =1 (mod 3) = 2x151(m0d3) = 1z =2

15z, =1 (mod 4) = —xQEl(modél) = z,=3

2

12, =1 (mod 5] = 2z,=1(mod5] = 1,=3
Substituting N, =20, N, =15, N, =12, z =2,12,=3, 1, =3, q =1
a, =2 and a, = 3 into the above formula:

T = alNlacl + a2N2x2 + a3N3x3

:(1x20><2)+(2><15><3)+(3x12x3)
— 238

We write this number in modulo the product of the given moduli:
n=3x4x5=60

Hence our solution is
7 =238 = 58 (mod 60)
(b) Let x be the number of students in the class. Then z satisfies the following:
= 1(mod 3), T = 3(mod 5), T = 5(m0d 7)
Applying the Chinese Remainder Theorem with r =3 gives
r=aNz +aNz, +aN,zx, *)
We have N, =5X7=35, N, =3x7=21 and N, =3x5=15. We also need
to find z, x, and z, which are the inverse of 35, 21 and 15 moduli 3, 5 and 7

respectively:

35z, =21, = 1(m0d 3) = 1z, =2

21r, =z, El(mod5) = r,=1

2 2
15:1:351:351(m0d 7) = z,=1
Substituting N, =35, N, =21, N, =15, z =2, 2, =1, 2, =1, ¢ =1, a,=3
and a, =95 into (*) yields
:E=(a1><Nlxz1)+(a2xN2xm2)+(a3xN3ng)

= (1x35x2)+(3x21x1)+ (5x15x1)
- 208



14.

15.
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The modulo n =3x5x7=105. So our general solution is
208 = 103(mod 105)

Therefore the number of students in the class are 103.

We need to prove the following is false:
If a’ = a(mod p) and ¢’ =a (mod q) then @’ =a (mod pq),

How?
Produce a counter example:

Let a=2, p=5, ¢=7 then we have
2 =32=2(mod 5) and 2’ =128 =2 (mod 7)
However
277 = 2% = (25)7
= (-3) =-2187 = -17 =18 (mod 35)

Hence the given statement is false.

We need to prove a'=1 (mod n) = k‘ h given a =1 (mod n)
Proof.

(<=). We assume k ‘ h which implies that km = h for some positive integer m.

Therefore, we have

" =a" = (a’“)m =1"=1 (mod n)
(:>). Suppose k /~/ h. By the division algorithm there are integers ¢ and r such

that
h=qgk+r 0O0<r<k.

We are given that a =1 (mod n) Substituting h = ¢k + r into this yields

q
a'=a™ = (ak) a = e’ =a" =1 (mod n)
because a°=1 (mod n)

We have a' =1 (mod N) Recall 0 <r <k but we are given that % is the

smallest positive integer such that a =1 (mod n) . This is a contradiction



16.

17.
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because we have found a smaller integer, 7, than k such that a" =1 (mod n)

Therefore our supposition & / h must be wrong so k ‘ h.

We are asked to prove that if a is even and p be prime such that
gcd(a, p) =1 put a* =-1 (mod p) then p=1 (mod 4)_

Proof.

We are given that a is even, so let @ = 2m where m is an integer. We are also
given that a satisfies a =-1 (mod p) so substituting a = 2m into this gives
a’ = (2m)2 =4m’ = -1 (mod p) (*)

Recall that -1=p—1 (mod p). Putting this into (*) gives

Am? Ep—l(modp) =  4m’ +1Ep50(modp)
As pis of the form 4m? + 1 therefore p=1 (HlOd 4). This is our required result.
We are given a is even and gcd(a, p) =1 therefore p must be odd. This
implies that p = 1(m0d 4) or p= 1(m0d 3) )

Suppose P = 1(mod 3) then

We need to show that the last two digits of a square number must be one of the
following; 00, el, e4, 25, 06 and €9.
Proof.
Let n be an integer. By the division algorithm we can write n as
n=10g+r where 0<7r <10
Evaluating the square working with modulo 100 (because we are interested in

the last two digits):

n® = (10q + 7’)2 =100¢> + 20qr + r* = 20gr + r° (mod 100)



18.
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We have n° = 20gr + 1 ? (HlOd 100) . Note that the first digit which is an integer
multiple of 20 is going to be even because we can only have

20, 40, 60, 80 and 1005500(rmy1100)

Hence the last two digits of a square number are

e0 + r? where 0 <7 <10 and e is even.

Substituting the values of =0, 1, 2, 3, ---, 9 gives
el + 0% = el
e0+1° =el
e0 +2% =e4
e0 + 3% =e9

e0+4%> =e0+16 = 06 where o is odd

e0 + 5% =e0+25=¢eb5
el + 6> =e0 + 36 = 06
e0 + 7> =e0 + 49 = ¢9
e0 + 8> =e0+ 64 =e4d

e0+9” =e0+8l=el
From this list we can only have €0, €l, e4, €9, 06, €5 . Note that the ones with

the last digit equal to 0 and 5 must have their squares ending in 00 and 25
(which is covered by eb) respectively. Hence the last two digits of a square

number must be one of the form; 00, el, e4, 25, 06 and e9.

(i) We need to solve =1 (mod 8). Creating a table of values gives

x(HDdS) 0 1 2 3 4 5 6 7

ﬁ(nndg) 0] 1 40 1) o] 1] 4| 1

From this table our solutions are

r=1 3 5 and7(mod8)

(ii) This time we create a table for modulo 7:

x(nmd7) 0 1 2 3 4 5 6

f(nmd7) 0 1 41 2 2| 4 1
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The only solutions of ¥° = 1<m0d 7) are

=1 6Ei1(mod7)

19. We are asked to factorize 2 027 651 281.

Let a, = ||[2027 651281/ = 45030 then

b, = 45030° — 2 027 651 281 = 49619 which is not a square number.

Repeating this we have

b, = 45031* — 2 027 651 281 = 139 680 which is not a square number.

Continuing in this manner we find that

b, = 45041> — 2 027 651 281 = 1 040 400 = 1020°
Rearranging this last result gives
2 027 651 281 = 45041> —1020°
- (45 041 — 1020) x (45 041 + 1020)
= 44 021 x 46 061

20. We are required to prove

Let a and b be integers which satisfy the congruence

a =b (mod n) and a £ +b (mod n) .

Then ng<CL -0, n) is a non-trivial factor of n.

Proof.
Let g = gcd(a —b, TL) Therefore, we must show that g = n and g = 1.
Case I: First we prove ¢ = n .

Suppose g = gcd(a —b, n) =" then N ‘ (a - b) and by the definition of
congruence we have @ =b (mod n) . This is a contradiction because we are given

aF b (mod n) therefore g = n.
Case II: Now we prove ¢ = 1.

Suppose g = ng((L —b, n) =1,



Complete Solutions to Supplementary Problems 3  Page 14 of 16

We are given that a° = b’ (mod n) Rewriting this
@ b =(a—b)(a+b) =0 (mod n) (1)
Which we can also express as
(a=b)(a-+b)=(a—b)0 (mod n|

By Cancellation Law (3.11):
If ez = cy(mod n) and gcd(c, n) =1 then =y (mod n)
Applying this corollary to the above line (a—b)(a+b) = (a—b)0 (mod n) gives

(a++b) =0 (mod n) which implies @ = —b (mod n)
This last congruence a = —b (mod n) contradicts our given result

a % +b (modn) Hence g = 1.

By combining both these cases, g =1 and g = n, we have g is a non-trivial

factor of n.

21. Creating a table of 7’ (mod 7) we have

T (mod 7) 0 1 2 3 4 5 6

5 (mod 7) 0 1 41 5 2 3] 6

Since z” (mod 7) produces the residues 0, 1, 2, 3, 4, 5 and 6 so we have a

complete residue system modulo 7.

22. (a) We need to show that 2p/’é2(m0d pQ). Let p =3 then
P = 8%2(mod 9)
(b) We are asked to show 2% = 2(1’110(1 10932) :

By using the hint 2% = 1(Hl0d 10932) we need to write the index 1093 as a

multiple of 364 and any remainder:

1093 = (3 X 364) + 1



23.
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Applying the rules of indices, we have
9u09 — o641 (2364)3 x2'=1"x2= 2(mod 10932)

We have our result.

We are asked to prove
P (:1:) =cz" +c _a" '+ +cezHc, =0 (mod p) has at most m solutions.
How do we prove this result?
By induction on the degree m.
Proof.
If m =1 then we have the polynomial

P(x) =c¢r+c, =0 = cz=-—c (modp)
The theorem also stipulates ¢ /é 0 (mod p) so in our case ¢ % 0 (mod p) which

implies that p /~/ ¢, - By question 3(a) of Exercises 2.1:
If p/a then ng(p, a) =1.

Applying this result to p/cl gives ng(p, C1) =1. Hence ¢,x = —c, (mod p)

has a unique solution.
Assume the result is true for degree m ==Fk:

P(I) =ca' +c "+ tcztc, =0 (mod p)

has at most k incongruent solutions. Required to prove the case m =k +1:
p (x) = ckﬂxk” + ckxk terter+ce, =0 (mod p)
has at most &+ 1 incongruent solutions
If p (g;) = 0 (mod p) has nosolutions then we are finished.
Now assume P (g;) =0 (mod p) has at least one solution z = «. Therefore P(x)
can be divided by z — « and by the Division Algorithm we have
P(az)z(m—a)@(m)—i—R (*)
where @ (x) is an integral coefficient polynomial of degree k and R is the

remainder which in this case is an integer. Substituting z = « into (*) gives
P(a) = (a — a) Q(a) +R=R= O(mod p)
Therefore the integer R satisfies R = 0<m0d p). Substituting this into (*)

yields
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P(:t:) = (x — a)Q(x) +R= (:L’ — a) Q(:z:)(mod p)
If x =0 is another incongruent solution then substituting this gives
P(1)=(-a)af)(moc
Since the integers a and b are incongruent which implies

a}_éb(mod p) = a —b}éO(mod p),
By Proposition (3.14) (a):

If oy = O(mod p) then T = ()( od p) or Y= O(mod p)

Applying this to ( ) ( ) ( ) (mOd p) gives Q( ) (mOd p) This
implies that any solution of p ( ) =0 (mod p) which is distinct from ¢ = o
must satisfy Q(x) = O(mod p). By the above induction hypothesis this

polynomial Q( ) (mod p) has at most k incongruent solutions. Hence the
given polynomial p (g;) =0 (mod p) has at most k41 incongruent solutions.

By mathematical induction we have our result.



