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Complete Solutions to Supplementary Problems 3 
 

1. (a) Since the reminder after dividing 2015 by 10 is 5 so  2015 5 mod10  is 

true. 

(b) 266 divided by 7 gives 0 reminder so  266 1 mod 7  is false. 

(c) 17 divided by 12 gives reminder 5 not 5  so  17 5 mod 12   is false. 

(d)  11 57 mod 34    implies that  

11 57 68 2 34        

Hence  11 57 mod 34    is true. 

(e) Since every integer a divided by 1 gives reminder zero so  0 mod1a   is 

true. 
 

2. We can use the following formula in each of the cases: 

(3.17)    0 0 0 0 0, , 2 , 3 , , 1 modn n n nx x x x x x g n
g g g g
                                           

  

(a) We are given the equation  7 21 mod 15x  . The  gcd 7, 15 1  and 

clearly 1 21 so we have a unique solution.  

By inspection we have  3 mod 5x   because  

 7 3 21 mod15   

This is the only solution to the given congruence. 

(b) This time we need to solve  12 24 mod 27x  . The  gcd 12, 27 3  and 

3 24 so we have 3 incongruent solutions to the given linear congruence. 

By inspection one of the solutions is  0 2 mod 27x  . Using the (3.17) formula 

with 27n  , 3g   we have 

     27 272, 2 1 and 2 2 2, 11, 20 mod 27
3 3

x      

Our three incongruent solutions are  2, 11, 20 mod 27x  . 
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(c) We are asked to solve the equation,  10 20 mod 30x  . The 

 gcd 10, 30 10  and as 10 20 we have 10 incongruent solutions. Clearly 

 0 2 mod 30x   is a solution. The others are found by substituting  

30 3
10

n
g
   and 0 2x   into the formula (3.17): 

       
 

2, 2 3, 2 2 3 , 2 3 3 , , 2 9 3 mod 30

2, 5, 8, 11, , 29 mod 30

x        






 

(d) Solving the given equation  3 2 mod 6x   we have the  gcd 3, 6 3  but 

3 2  so there are no solutions to this equation. 

 

3. (a) Let x be the multiplicative inverse of  5 mod12 . Then x satisfies 

 5 1 mod 12x   

By trialling some x values we have 5x   because 

 5 5 25 1 mod 12    

Hence the multiplicative inverse of  5 mod12  is  5 mod12 . 

(b) Similarly we have to find x such that  

 7 1 mod 15x   

Trialling 2x   gives  7 2 14 1 mod 15    . Multiplying this by 1  gives 

   7 2 1 7 13 1 mod15       

Hence the multiplicative inverse of  7 mod15  is  13 mod15 .  

(c) We need to find the multiplicative inverse of  10 mod 27 . This implies that 

we need to find x such that 

 10 1 mod 27x   

Trialling 11x  we get  

 10 11 110 2 mod 27      (�) 

Easier to deal with 2 rather than 10. We know 2 14 28   and  28 1 mod 27

. Multiplying the congruence in (�) by 14 gives 
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 10 11 14 2 14 1 mod 27      

Now  11 14 154 19 mod 27   . Putting this into the above calculation yields 

 10 11 14 10 19 1 mod 27      

Hence the multiplicative inverse of  10 mod 27  is  19 mod 27 . 

(d) We need to find the inverse of  6 mod15 . Let x be the inverse then 

 6 1 mod 15x   

This linear congruence has no solution because  gcd 6, 15 3  and 3 1. 

This implies that  6 mod15  has no inverse. 

(e) We need to find x such that  7 1 mod 12x  . Well we know that  

   7 5 35 1 mod 12    

Multiplying this by 1  gives 

       7 5 1 1 1 mod12      

Hence  5 7 mod 12x    .  

(f) This time we need to solve  11 1 mod 12x  . Note that  11 1 mod 12  . 

Using this on  11 1 mod 12x   we have 

     11 1 1 mod 12 1 11 mod 12x x x        

The multiplicative inverse of  11 mod 12  is  11 mod 12 . 

(g) We are asked to find the multiplicative inverse of  9 mod13 . This means 

we need to find x such that  9 1 mod 13x  . Since  9 4 mod13   we have 

 9 4 1 mod13x x    

Multiplying this  4 1 mod 13x   by 1  yields 

   4 1 12 mod 13 implies that 3 mod 13x x     

Hence the inverse of  9 mod13  is  3 mod13  or  19 3 mod13  . 
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(h) We are asked to find the multiplicative inverse of  9 mod15 . Note that 

 gcd 9, 15 3  therefore  9 mod15  has no inverse. 

 
4. It is all the residues which have a gcd greater than 1 with 12: 

       
     

gcd 2, 12 2, gcd 3, 12 3, gcd 4, 12 4, gcd 6, 12 6,

gcd 8, 12 4, gcd 9, 12 3 and gcd 10, 12 2

   

  
 

Therefore there are no multiplicative inverses for  

 2, 3, 4, 6, 8, 9  and 10 mod12  

 

5. We are asked to factorize 48351. The ceiling of 48351  is 

48351 220    
 

Finding the difference between 220 squared and 48351 gives 
2 2220 48351 49 7    

Rearranging this as a difference of two squares we have 

   2 248351 220 7 220 7 220 7 227 213         

Hence 48351 227 213  . Clearly 213 is divisible by 3 so 

213 71
3

  and 71 is prime. 

We also need to find the prime factors of 227. Let p be a prime factor of 227 
then 

227 15p     
         

The only primes below 15 are 2, 3, 5, 7, 11 and 13. Clearly 2, 3 and 5 do not go 
into 227. Also 227 is not divisible by 7, 11 and 13 (check this for yourself), 
therefore 227 is prime. 
The prime decomposition of 48 351 is 3 71 227  . 

 

6. (a) The first statement  0 mod an p  then  10 mod an p   is false because 

 532 0 mod 2  but 32  60 mod 2  as  632 32 mod 2  

(b) This statement is true;   0 modap n  then  1 0 modap n  . 

Proof. 
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We are given that  0 modap n . Using Corollary (3.7): 

 modx y n   implies   modxc yc n  

On  0 modap n  by multiplying this by p gives  

 1 1 0 moda app p n    

We have our required result. 
■ 

(c) This statement is also true;  0 modap n  then  0 moda mp n  . 

Proof. 

We assume  0 modap n . By the definition of congruence we have 
ap kn  for some integer k. 

Using the rules of indices we can write  moda m a mp p p n  . Substituting the 

above ap kn  in this gives 

 0 mod Because is a multiple of a m a m mp p p knp n kn n         

This completes our proof. 
■ 

(d) The given statement  0 modap n  and  0 modbp m  then 

   min , 0 moda bp m n   is false because  52 0 mod 32  and 

 72 0 mod 128  but  min 5, 7 52 2 32    0 mod 128 32 . 

 

7. (a) We need to prove; if n is odd then  2 1 mod 8n  . 

Proof. 
Let n be an odd integer. By the division algorithm with 8b   we have  

8n q r   where 0 8r       
Since n is odd so the reminder r can only be 1, 3, 5 or 7. 
Squaring this 8n q r   yields 

     2 22 2

2 2 2 2

8 8 2 8
8 8 2 8 where  8 2

n q r q q r r
q qr r m r m q qr

      
        

 

We have 2 28n m r   where 1, 3, 5, 7r  . Writing this as a congruence we 

have 
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 2 2 2 28 0 mod 8n m r r r      

Substituting the above values of r into this yields 

 2 2 2 2 2 21 , 3 , 5 , 7 1, 1, 1, 1 mod 8n r    

Hence if n is odd then  2 1 mod 8n  . This completes our proof. 

■ 

(b) We need to prove for any n we have  3 0, 1 , 6 mod 7n  . 

Proof. 
In question 10 of the Supplementary Problems 1 we showed that: 
The cube of any integer is of the form 7k  or 7 1k  . Let n be any integer then 
from this statement we have 3 7 , 7 1n k k  .  

Representing this 3 7 , 7 1n k k   as a congruence with modulo 7 gives 

 3 7 , 7 1 0, 1 0, 1, 6 mod 7n k k      

■ 

(c) We are asked to prove for any n we have  4 0 or  1 mod 5n  . 

Proof. 
Let n be any integer. Then using the division algorithm with 5b   we have 

5n q r   where 0 5r  . 
Expanding the fourth power of n by the binomial theorem we have: 

         4 4 3 24 2 3 4

5 because this is a multiple of 5
4

5 5 4 5 6 5 4 5

5
m

n q r q q r q r q r r

m r


      

 

  

Writing this as a congruence with modulo 5 yields 

 4 4 4 45 0 mod 5n m r r r      

From above we have 0 5r   so r can only have the values 0, 1, 2, 3 or 4. 
Putting these into the above yields 

 
4 4 4 4 4 4 40 , 1 , 2 , 3 , 4

0, 1, 16, 81, 256 0, 1, 1, 1, 1 mod 5
n r 

 
 

Hence  4 0 or  1 mod 5n  . This completes our proof. 

■ 
 

8. We apply the division algorithm with a n  and 4b . 
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Proof. 
Let n be an integer. Then by the division algorithm we can write this as  

4 0 4n q r r     

Squaring this number gives 

 
 

22 2 2

2 2 2 2

4 16 8
4 4 2 4 where  4 2

n q r q qr r
q qr r m r q qr m

    
      

 

Note that r can only have values 0, 1, 2 or 3. Squaring each of these gives 
20 0 , 21 1 , 22 4  and 23 9  

Substituting this into the above yields 
2 24 4 , 4 1, 4 4, 4 9n m r m m m m       

Writing each of these as congruence in modulo 4: 

 
2 4 , 4 1, 4 4, 4 9

0, 1, 0, 1 mod 4
n m m m m   


 

Hence a square number is only congruent to 0 or 1 modulo 4. 
■ 

 

9. We need to prove if  moda b n  and 0c   then  modac bc nc . 

Proof. 

From  moda b n  we have  

a b kn   for some integer k. 
Multiplying this by c gives 

ac bc knc   

As we have 0c   therefore  modac bc nc . This is our required result. 

■ 
 

10. We are required to prove that if  moda b n  and ,   and  d a d b d n  

where d  is a positive integer then moda b n
d d d

 
  

 
. 

Proof. 

From  moda b n  we have a b kn   for some integer k. Dividing this 

a b kn   by d yields  
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a b nk
d d d
       

We are given that ,   and  d a d b d n  so these ,   and a b n
d d d

 are all 

integers which implies we have moda b n
d d d

 
  

 
. This completes our proof. 

■ 
 

11. We are asked to prove that  modpa a p  then  1 1 modpa p   provided 

p a . 

Proof. 

We can write the given congruence  modpa a p  as  

     1 1 modpa a a p   

Applying Cancellation Law (3.12): 

If  modcx cy p   and prime p does not divide into c then  modx y p . 

To      1 1 modpa a a p   gives  1 1 modpa p  . 

■ 
 

12. Let 5x   and the prime 2p   then 

 25 1 mod 2   

We have both  5 1 0 mod 2   and  5 1 0 mod 2  . 

 

13. (a) We apply the Chinese Remainder Theorem to solve  

     1 mod 3 , 2 mod 4 , 3 mod 5x x x    

The formula is: 

(3.23)  1 1 1 2 2 2 3 3 3 r r rx a N x a N x a N x a N x      

Since we are given three equations so we use this formula with 3r  : 

1 1 1 2 2 2 3 3 3x a N x a N x a N x    
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In our case 1 2 320, 15, 12N N N   .  

We need to find the kx ’s which are given by  1 modk k kN x n  for  

1, 2 and  3k  : 

   1 1 120 1 mod 3 2 1 mod 3 2x x x      

   2 2 215 1 mod 4 1 mod 4 3x x x       

   3 3 312 1 mod 5 2 1 mod 5 3x x x      

Substituting 1 2 320, 15, 12N N N   , 1 2x  , 2 3x  , 3 3x  , 1 1a 

 2 2a   and 3 3a   into the above formula: 

     
1 1 1 2 2 2 3 3 3

1 20 2 2 15 3 3 12 3
238

x a N x a N x a N x  

        


 

We write this number in modulo the product of the given moduli: 
3 4 5 60n      

Hence our solution is  

 238 58 mod 60x    

(b) Let x be the number of students in the class. Then x  satisfies the following: 

     1 mod 3 , 3 mod 5 , 5 mod 7x x x     

Applying the Chinese Remainder Theorem with 3r   gives 

1 1 1 2 2 2 3 3 3x a N x a N x a N x     (*) 

We have 1 5 7 35N    , 2 3 7 21N     and 3 3 5 15N    . We also need 

to find 1 2,x x  and 3x  which are the inverse of 35, 21 and 15 moduli 3, 5 and 7 

respectively: 

 1 1 135 2 1 mod 3 2x x x     

 2 2 221 1 mod 5 1x x x     

 3 3 315 1 mod 7 1x x x     

Substituting 1 2 335, 21, 15N N N   , 1 2x  , 2 1x  , 3 1x  , 1 1a  , 2 3a 

and 3 5a    into (*) yields 

     
     

1 1 1 2 2 2 3 3 3

1 35 2 3 21 1 5 15 1
208

x a N x a N x a N x        

        

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The modulo 3 5 7 105n     . So our general solution is 

 208 103 mod105   

Therefore the number of students in the class are 103. 
 

14. We need to prove the following is false: 

If  modpa a p  and  modqa a q  then  modpqa a pq .  

How? 
Produce a counter example: 
Let 2a  , 5, 7p q   then we have 

 52 32 2 mod 5   and  72 128 2 mod 7   

However  

 
   

75 7 35 5

7

2 2 2

3 2187 17 18 mod 35

  

      
 

Hence the given statement is false. 
 

15. We need to prove  1 modha n k h   given  1 modka n . 

Proof. 

  . We assume k h  which implies that km h  for some positive integer m. 

Therefore, we have  

   1 1 mod
mh km k ma a a n    . 

  . Suppose k h . By the division algorithm there are integers q and r such 

that 
0h qk r r k    . 

We are given that  1 modha n . Substituting h qk r   into this yields 

 
 

  
because 1 mod

1 1 mod
k

qh qk r k r q r r

a n

a a a a a a n



      

We have  1 modra n . Recall 0 r k   but we are given that k is the 

smallest positive integer such that  1 modka n . This is a contradiction 
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because we have found a smaller integer, r, than k such that  1 modra n . 

Therefore our supposition k h  must be wrong so k h . 

■ 
 

16. We are asked to prove that if a is even and p be prime such that 

 gcd , 1a p   but  2 1 moda p   then  1 mod 4p  . 

Proof. 

We are given that a is even, so let 2a m  where m is an integer. We are also 

given that a satisfies  2 1 moda p   so substituting 2a m  into this gives 

   22 22 4 1 moda m m p      (*) 

Recall that  1 1 modp p   . Putting this into (*) gives 

   2 24 1 mod 4 1 0 modm p p m p p       

As p is of the form 24 1m   therefore  1 mod 4p  . This is our required result. 

We are given a is even and  gcd , 1a p   therefore p must be odd. This 

implies that  1 mod 4p   or  1 mod 3p  . 

Suppose  1 mod 3p   then  

■ 
 

17. We need to show that the last two digits of a square number must be one of the 
following; 00, e1, e4, 25, o6 and e9. 
Proof. 
Let n be an integer. By the division algorithm we can write n as 

10 where  0 10n q r r     

Evaluating the square working with modulo 100 (because we are interested in 
the last two digits): 

   22 2 2 210 100 20 20 mod 100n q r q qr r qr r        
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We have  2 220 mod100n qr r  . Note that the first digit which is an integer 

multiple of 20 is going to be even because we can only have 

20, 40, 60, 80 and  100 00 mod100  

Hence the last two digits of a square number are  
20e r  where 0 10r   and e is even. 

Substituting the values of 0, 1, 2, 3, , 9r    gives 

20 0 0e e   
20 1 1e e   
20 2 4e e   
20 3 9e e   

20 4 0 16 6 where  is odde e o o     

20 5 0 25 5e e e     
20 6 0 36 6e e o     
20 7 0 49 9e e e     
20 8 0 64 4e e e     
20 9 0 81 1e e e     

From this list we can only have 0, 1, 4, 9, 6, 5e e e e o e . Note that the ones with 

the last digit equal to 0 and 5 must have their squares ending in 00 and 25 
(which is covered by e5) respectively. Hence the last two digits of a square 
number must be one of the form; 00, e1, e4, 25, o6 and e9. 

■ 
 

18. (i) We need to solve  2 1 mod 8x  . Creating a table of values gives 

 mod 8x  0 1 2 3 4 5 6 7 

 2 mod 8x  0 1 4 1 0 1 4 1 

 From this table our solutions are  

 1, 3, 5 and 7 mod 8x   

 (ii) This time we create a table for modulo 7: 

 mod 7x  0 1 2 3 4 5 6 

 2 mod 7x  0 1 4 2 2 4 1 
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 The only solutions of  2 1 mod 7x   are 

 1, 6 1 mod 7x     

 
19. We are asked to factorize 2 027 651 281. 

Let  1 2 027 651 281 45030a       then 
2

1 45030 2 027 651 281 49619b     which is not a square number. 

Repeating this we have  
2

2 45031 2 027 651 281 139 680b     which is not a square number. 

Continuing in this manner we find that  
2 2

12 45041 2 027 651 281 1 040 400 1020b      

Rearranging this last result gives  

   
2 22 027 651 281 45041 1020

45 041 1020 45 041 1020
44 021 46 061

 
   
 

 

 
20. We are required to prove  

Let a and b be integers which satisfy the congruence  

 2 2 moda b n  and  moda b n  . 

Then  gcd ,a b n  is a non-trivial factor of n. 

Proof. 

Let  gcd ,g a b n  . Therefore, we must show that g n  and 1g  .  

Case I: First we prove g n . 

Suppose  gcd ,g a b n n    then  n a b  and by the definition of 

congruence we have  moda b n . This is a contradiction because we are given 

 moda b n   therefore g n . 

Case II: Now we prove 1g  . 

Suppose  gcd , 1g a b n   .  
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We are given that  2 2 moda b n . Rewriting this  

    2 2 0 moda b a b a b n       (�) 

Which we can also express as  

      0 moda b a b a b n      

By Cancellation Law (3.11): 

If  modcx cy n    and  gcd , 1c n    then  modx y n . 

Applying this corollary to the above line       0 moda b a b a b n     gives 

   0 moda b n   which implies  moda b n   

This last congruence  moda b n  contradicts our given result 

 moda b n  . Hence 1g  . 

By combining both these cases, 1g   and g n , we have g is a non-trivial 

factor of n. 
■ 

21. Creating a table of  5 mod 7x  we have 

 mod 7x  0 1 2 3 4 5 6 

 5 mod 7x  0 1 4 5 2 3 6 

Since  5 mod 7x  produces the residues 0, 1, 2, 3, 4, 5 and 6 so we have a 

complete residue system modulo 7. 
 

22. (a) We need to show that 2p   22 mod p . Let 3p   then  

32 8   2 mod 9  

(b) We are asked to show  1093 22 2 mod1093 .  

By using the hint  364 22 1 mod 1093  we need to write the index 1093 as a 

multiple of 364 and any remainder: 

 1093 3 364 1     
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Applying the rules of indices, we have 
     33 364 11093 364 1 3 22 2 2 2 1 2 2 mod 1093        

We have our result. 
 

23. We are asked to prove  

   1
1 1 0 0 modm m

m mP x c x c x c x c p
       has at most m solutions. 

How do we prove this result? 
By induction on the degree m. 
Proof. 
If 1m   then we have the polynomial  

   1 0 1 00 modP x c x c c x c p       

The theorem also stipulates mc   0 mod p  so in our case 1c   0 mod p  which 

implies that p 1c . By question 3(a) of Exercises 2.1: 

If p a  then  gcd , 1p a  . 

Applying this result to p 1c  gives  1gcd , 1p c  . Hence  1 0 modc x c p   

has a unique solution. 
Assume the result is true for degree m k : 

   1
1 1 0 0 modk k

k kP x c x c x c x c p
        

has at most k incongruent solutions. Required to prove the case 1m k  : 

   1
1 1 0 0 modk k

k kP x c x c x c x c p
       

has at most 1k   incongruent solutions  
If    0 modP x p  has no solutions then we are finished. 

Now assume    0 modP x p  has at least one solution x a . Therefore  P x  

can be divided by x a  and by the Division Algorithm we have 

     P x x a Q x R      (*) 

where  Q x  is an integral coefficient polynomial of degree k and R is the 

remainder which in this case is an integer. Substituting x a  into (*) gives 

       0 modP a a a Q a R R p      

Therefore the integer R satisfies  0 modR p . Substituting this into (*) 

yields 
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          modP x x a Q x R x a Q x p      

If x b  is another incongruent solution then substituting this gives 

      modP b b a Q b p   

Since the integers a and b are incongruent which implies  

a  modb p a b    0 mod p . 

By Proposition (3.14) (a): 

If  0 modxy p  then    0 mod or  0 modx p y p  . 

Applying this to        0 modP b b a Q b p    gives    0 modQ b p . This 

implies that any solution of    0 modP x p  which is distinct from x a  

must satisfy    0 modQ x p . By the above induction hypothesis this 

polynomial    0 modQ x p  has at most k incongruent solutions. Hence the 

given polynomial    0 modP x p  has at most 1k   incongruent solutions. 

By mathematical induction we have our result. 
■ 

 
 


