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Complete Solutions to Supplementary Problems 6 
 

1. In each case we use corollary (6.5): 

Let the integer a modulo n have order k, then  k n .  

(a) Since 7 is prime so  7 6  . The divisors of 6 are 1, 2, 3 and 6.  

We need to check each of these indices to 3 modulo 7. Clearly 1 is not going to 

be the order because  13 3 mod 7  and by Euler’s theorem we have 

 63 1 mod 7 . So checking the remaining two integers gives 

 23 9 2 mod 7   and  33 27 6 mod 7  . 

Hence the order of 3 modulo 7 is 6. 
(b) This time we are asked to work with modulo 13. The Euler phi function of 
13 is 12 because 13 is prime. The divisors of 12 are 1, 2, 3, 4, 6 and 12. Again 
not bothering with the last and first of these integers as indices and checking 
the others gives 

   2 33 9 mod 13 , 3 27 1 mod 13   . 

Hence the order of 3 modulo 13 is 3. 
(c) We know that 23 is prime so  23 22   and the divisors of 22 are 1, 2, 11 

and 22: 

   2 113 9 mod 23 , 3 177147 1 mod 23   . 

The order of  3 mod 23  is 11. 

(d) Similarly we have 

 29 28  .    

The divisors of 28 are 1, 2, 4, 7, 14 and 28. 

       2 4 7 143 9 mod 29 , 3 23 mod 29 , 3 12 mod 29 , 3 28 mod 29    . 

By Euler’s theorem we have  283 1 mod 29 . Hence the order of  3 mod 29  is 

28. 
Clearly by the above results, 3 is a primitive root of 7 and 29. 
 

2. (i) The order of 5 modulo 31 is found by first evaluating Euler’s phi function of 
31: 

 31 30 Because 31 is prime       
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The divisors of 30 are 1, 2, 3, 5, 6, 10, 15 and 30. Checking these integers as 
indices of 5 modulo 31 gives: 

   2 35 25 mod 31 , 5 125 1 mod 31   . 

Therefore, the order of  5 mod 31  is 3. 

(ii) We are asked to find the least non-negative residue x modulo 31 in 

 10005 mod 31x . 

By part (i) we have the order of  5 mod 31  is 3. We need to write the index 

1000 as a multiple of 3 plus any remainder. By the division algorithm 

 1000 333 3 1  . 

Substituting this  1000 333 3 1   into the above index gives 

     333333 3 11000 3 3335 5 5 5 1 5 5 mod 31      . 

We have  10005 5 mod 31 . 

 
3. The Euler totient function  100 40  . The divisors of 40 are 1, 2, 4, 5, 8, 10, 

20 and 40. The order of 7 modulo 100 will be one of these integers. We have 

 2 3 47 49 , 7 343 43, 7 2401 1 mod 100     .   

Hence the order of  7 mod 100  is 4.  

The last two digits of 10037  is given by the least non-negative residue 

 mod 100x  which satisfies  

 10037 mod 100x . 

Writing the index 1003 as a multiple of 4 plus remainder because 4 is the order 

of  7 mod 100 : 

 1003 250 4 3    .   

We have  
     250250 4 31003 4 3 250 3 37 7 7 7 1 7 7 43 mod 100        . 

The last two digits of 10037  are 43. 
 

4. We need to find the order of  10 mod 37 . Since 37 is prime so  

 37 36  . 
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The divisors of 36 are 1, 2, 3, 4, 6, 9, 12, 18 and 36. One of these integers is the 

order of  10 mod 37 : 

   2 310 100 26 mod 37 , 10 1000 1 mod 37    . 

Thus, the order of  10 mod 37  is 3. 

The inverse of  10 mod 37  is  210 26 mod 37  because  

   210 10 1000 1 mod 37  . 

We also need to solve  10 21 mod 37x  . Multiplying both sides of this 

congruence by 26 (as this is the inverse) gives 

 
 

26 10 26 21 mod 37

546 28 mod 37

x

x

  
 

 

 
5. We are given the following table in the question: 

a 1 2 3 4 5 6 7 8 9 10 11 12 

 2ind a  12 1 4 2 9 5 11 3 8 10 7 6 

We use the following rules of indices given in Proposition (6.16): 

(a)         ind ind ind modr r rab a b n   

(b)       ind ind modk
r ra k a n  

(c)     ind 1 0 modr n   and      ind 1 modr r n  

(i) We are asked to solve  75 1 mod 13x  . Applying indices to both sides gives   

     
       

7
2 2

2 2 2

ind 5 ind 1 mod 12

ind 5 7 ind ind 1 mod 12 Linear Form

x

x


           

  

By the above table we have  2ind 5 9  and  2ind 1 12 . Putting these values 

into the above derivation gives 

   
   

2

2

9 7 ind 12 mod 12

7 ind 3 mod 12

x

x

 


 

The  gcd 7, 12 1  so we have a unique solution. By inspection the solution is 

   2ind 9 mod 12x   

Using the above table in reverse order we have  
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 5 mod 13x   

Hence our solution is  5 mod 13x  . 

(ii) Let  mod 13y  be the multiplicative inverse of  5 mod 13  then 

 5 1 mod 13y   which implies  75 mod 13y   by part (i) 

Evaluating this gives  

 75 8 mod 13y      

The inverse of  5 mod 13  is  8 mod 13 . 

(iii) We are asked to solve  78 12 mod 13x  . We can be smart about solving 

this. Note that  128 5, 1 mod 13    and substituting these gives us the 

equation  

    7 7

Multiplying by 1

5 1 mod 13 5 1 mod 13x x


     

We solved this  75 1 mod 13x   in part (i) and the solution is  5 mod 13x  . 

(iv) We have more or less the same congruence as part (iii) but this time the index 
is 6. By applying indices, we have the linear form; 

   26 ind 3 mod 12x  . 

The  gcd 6, 12 6  but 6 3  so the given equation has no solution. 

(v) Similarly we have  

   28 ind 3 mod 12x  . 

The  gcd 8, 12 4  and 4 3  therefore  88 12 mod 13x   has no solution. 

 
6. We fill in the given table by evaluating powers of 5 modulo 23: 

 

 

1 2 3 4

5 6 7

8 9 10 11 12 13 14

15 16 17 18 19 20 21

22

5 5, 5 25 2 mod 23 , 5 125 10, 5 10 5 50 4,
5 4 5 20, 5 100 8, 5 8 5 40 17,
5 16, 5 11, 5 9, 5 22, 5 18, 5 21, 5 13,
5 19, 5 3, 5 15, 5 6, 5 7, 5 12, 5 14

and 5 1 mod 23

        
        
      
      



 

Hence 5 is a primitive root of 23. 
Putting these into the table gives 
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a 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

 5ind a  22 2 16 4 1 18 19 6 10 3 9 20 14 21 17 8 

 
a 17 18 19 20 21 22 

 5ind a  7 12 15 5 13 11 

 

(a) We are asked to solve  12 4 mod 23x  . Using the rules of indices we have 

     
      
12

5 5

5 5
By the above table

ind ind 4 mod 22

12 ind ind 4 4 mod 22

x

x



   

The  gcd 12, 22 2  and 2 4  so we have two incongruent solutions. 

 Applying Proposition (3.10) of chapter 3: 

If  modac bc n   then mod na b
g

      
 where  gcd ,g c n . 

 To    512 ind 4 mod 22x   with 2g   gives 

   56 ind 2 mod 11x   which implies    5ind 4 mod 11x  . 

 So we have    5ind 4 mod 11x   and our two solutions are given by  

   5ind 4, 11 4 4, 15 mod 22x    . 

Reading these entries in the bottom row of the above table and finding the 
corresponding integers in the top row we have 

 4, 19 mod 23x  .   [  4 mod 23 ] 

(b) Now we are asked to solve  107 2 mod 23x  . Again using indices we have 

     
       

10
5 5

5 5 5

ind 7 ind 2 mod 22

ind 7 10 ind ind 2 mod 22

x

x


    

  

Using the above table gives  

   
   

5

5

19 10 ind 2 mod 22

10 ind 2 19 17 5 mod 22

x

x

 
   

 

What is the solution of    510 ind 5 mod 22x  ? 

There are no solutions to this congruence because  gcd 10, 22 2  and  

2 5 . Hence we have no solution. 
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(c) We are asked to solve  119 14 mod 23x  . Taking indices gives 

     
       

11
5 5

5 5 5

ind 9 ind 14 mod 22

ind 9 11 ind ind 14 mod 22

x

x


     

 

By the above table we have 

       
     

5 5 5

5 5

ind 9 11 ind ind 14 mod 22

10 11 ind 21 11 ind 21 10 11 mod 22

x

x x

     
         

 

The  gcd 11, 22 11  and 11 11  so we have 11 incongruent solutions. By 

using Proposition (3.10) of chapter 3: 

If  modac bc n   then mod na b
g

      
 where  gcd ,g c n . 

On    511 11 mod 22ind x   gives 

   5 1 mod 2ind x  . 

Our solutions are of the form 2 1k  [odd integer] where k is 0, 1, 2, 3, … and 10 
because we have 11 solutions: 

   5 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21 mod 22ind x  . 

Using the table in reverse order gives 

 

 

5 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21
5, 10, 20, 17, 11, 22, 21, 19, 15, 7, 14

Putting them in 
5, 7, 10, 11, 14, 15, 17, 19, 20, 21, 22 mod 23

ascending order

ind x
x



 
   
  

 

(d) Now we are asked to solve  11 5 mod 23x  . Again using the rules of 

indices highlighted in the previous question yields 

     
 

5 511 5 mod 22

9 1 mod 22

x ind ind

x




 

This equation has a unique solution because  gcd 9, 22 1  and 1 1 . By trial 

and error we have our unique solution  5 mod 22x  .  
 

7. (a) We are asked to find the least non-negative residue  mod 23x  such that  

 69 706 7 mod 23x . 

 Using the rules of indices indices given in Proposition (6.16): 
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(a)         ind ind ind modr r rab a b n   

(b)       ind ind modk
r ra k a n  

(c)     ind 1 0 modr n   and      ind 1 modr r n  

On  69 706 7 mod 23x  gives 

     
       
       

69 70
5 5

69 70
5 5 5

5 5 5

ind 6 7 ind mod 22

ind 6 ind 7 ind mod 22

69 ind 6 70 ind 7 ind mod 22

x

x

x



 

 
 

Using the above table in solution to the previous question we have 

     
     

   

5 5 5

5

5

69 ind 6 70 ind 7 ind
69 18 70 19 ind

ind 2572 20 mod 22

x
x

x

 
   

 
 

Locating the residue 20 in the bottom row of the table and reading off the 
corresponding value in the top row we have 

 12 mod 23x  . 

Hence  69 706 7 12 mod 23 . 

(b) This time we are asked to find  666 100 10009 11 17 mod 23x  . Like part (a) we 

have 

   
       

666 100 1000
5 5

5 5 5

ind ind 9 11 17
666 ind 9 100 ind 11 1000 ind 17 *

x 
  

 

Looking up at the table of the previous question to evaluate  

     5 5 5ind 9 , ind 11 and  ind 17  

We have      5 5 5ind 9 10, ind 11 9 and  ind 17 7   . Substituting these into 

(*) yields  

       
     

 

5 5 5 5ind 666 ind 9 100 ind 11 1000 ind 17
666 10 100 9 1000 7

14560 18 mod 22

x   
     
 

 

Again using the table in reverse order gives 

 6 mod 23x  . 

Hence  666 100 10009 11 17 6 mod 23 . 
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8. This question is very similar to the previous question. We use the given table: 
a 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

 2ind a
 

18 1 13 2 16 14 6 3 8 17 12 15 5 7 11 4 10 9 

(a) We are given   100 100 100 1005 7 8 9 mod 19x  . Using the rules of indices given in 

Proposition (6.16): 

(a)         ind ind ind modr r rab a b n   

(b)       ind ind modk
r ra k a n  

(c)     ind 1 0 modr n   and      ind 1 modr r n  

On  100 100 100 1005 7 8 9 mod 19x   yields 

         
          

2 2 2 2 2

2 2 2 2
Factorizing

ind 100 ind 5 100 ind 7 100 ind 8 100 ind 9

100 ind 5 ind 7 ind 8 ind 9 mod 18

x                             
      

 

Using the above table to evaluate these indices gives 

         

 

2 2 2 2 2ind 100 ind 5 ind 7 ind 8 ind 9
100 16 6 3 8
3300 6 mod 18

x       
      

 
 

Using the above table in reverse direction (we locate 6 in the bottom row of the 
table and see what integer it corresponds to in the top row): 

 7 mod 19x  . 

Therefore  100 100 100 1005 7 8 9 7 mod 19 . 

(b) This time we are asked to compute  1 000 001 1 000 003 1 000 00711 15 18 mod 19x  . By 

the same token we have 

   
     

     
 

1 000 001 1 000 003 1 000 007
2 2

2 2 2

ind ind 11 15 18

1 000 001 ind 11 1 000 003 ind 15 1 000 007 ind 18
1 000 001 12 1 000 003 11 1 000 007 9

32 000 108 14 mod 18

x 

  
     

 

 

Finding the integer 14 in the bottom row of the above table and reading off the 
corresponding value in the top row we have 

 6 mod 19x  . 

Hence  1 000 001 1 000 003 1 000 00711 15 18 6 mod 19 . 
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(c) We are asked to find  1001005 mod 19x   where  mod 19x  is the least non-

negative residue. Taking indices gives 

   
 

 
    

100100
2 2

100 100
2 2

Because 100 10 mod 18

ind ind 5

100 ind 5 10 ind 5 mod 18

x





   

From the given table  2ind 5 16 . Substituting this into the above gives 

   100
2ind 10 16 mod 18x     (�) 

Using the given hint  10 10 mod 18n   we have  

   100
2ind 10 16 10 16 160 16 mod 18x       . 

Using the above table in the reverse direction we have 

 5 mod 19x  . 

Hence the least non-negative residue of 
1001005  is  5 mod 19 . 

 

9. We are asked to show that ka   1 mod p   where 1 1k p    and a is a 

primitive root. 
Proof. 
We are given that a is a primitive root. Therefore by Proposition (6.10): 

If  gcd , 1a n   and a has order  n  then the integer a is called the 

primitive root of the integer n.  

Since p is prime so   1p p   . Recall that the order is the smallest positive 

integer m such that  1 modma n . Our given a is a primitive root so order is 

  1p p    which implies that ka   1 mod p  for 1 1k p   .  

This completes our proof. 
■ 

 
10. The order of 10 modulo 18 does not exist because by definition (6.1) we need 

the  gcd , 1a n   but we have  gcd 10, 18 2 : 

 Let 1n   and  gcd , 1a n  . The order of a modulo n is the smallest 

positive integer k such that  1 modka n .  

See Example 3 of main text. 
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11. (a) We need to solve  3 2 mod 37x   by using the primitive root 2. Taking the 

index to the base 2 of both sides of this equation and using the rules of indices 

gives 

     
   

3
2 2

2

ind ind 2 mod 36

3 ind 1 mod 36

x

x



 
   

The  gcd 3, 36 3  and 3 1 so there are no solutions. 

(b) This time we solve  16 10 mod 37x  . By taking the index to the base 2 of 

this we have  

    
      
16

2 2

2 2

ind ind 10 mod 36

16 ind ind 10 mod 36 �

x

x



 
 

We need to find the index k such that  2 10 mod 37k  . Evaluating powers of 2 

yields 

 
5 6 7 8 9

10 11 12

2 32 5, 2 10, 2 20, 2 40 3, 2 6,
2 12, 2 24, 2 11 mod 37

            
     

  

Now    2
11 121 10 mod 37   . Therefore    2242 11 10 mod 37    which 

implies that 24k  . Hence  2ind 10 24  so substituting this into  �  gives 

   216 ind 24 mod 36x  . 

The  gcd 16, 24 4  and 4 36  so we have 4 incongruent solutions. Dividing 

this congruence by 4 

   24 ind 6 mod 9x  .    

By inspection we have  2ind 6x   and the other 3 solutions are given by 

adding equal steps of 9 to each 

   2ind 6, 6 9, 6 18, 6 27 6, 15, 24, 33 mod 36x      . 

The 4 incongruent solutions to the given equation are 

   
 

6 15 24 33

3 3

3

2 , 2 , 2 , 2

27, 5 , 10, 24 By above calculations
27, 23, 10, 13 27, 23, 10, 14 mod 37

x 
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Our 4 solutions in ascending order are  , 14, 23, 2710 mod 37x  . 

 

12. We are given that the order of  moda n  and  modb n  is r. However we need 

to show that the order of  modab n  is not necessarily equal to r. 

(a) We consider modulo 9. Let us evaluate the order of  2 mod 9  and 

 5 mod 9 . How? 

By corollary (6.5): 

Let the integer a modulo n have order k, then  k n .  

The Euler phi function  9 6  . The only divisors of 6 are 1, 2, 3 and 6: 

 2 3 62 4, 2 8, 2 64 1 mod 9    . 

The order of  2 mod 9  is 6. Similarly we have 

 2 3 65 25 7, 5 125 8, 5 1 mod 9     . 

The order of  5 mod 9  is 6 as well. However the order of  

 2 5 10 1 mod 9    is clearly 1. 

Hence the order of    2 5 mod 9  is not equal to 6. 

(b) The order of both  2 mod 19  and  3 mod 19  is 18.  

Let us evaluate the order of  2 3 6 mod 19  . By corollary (6.5): 

Let the integer a modulo n have order k, then  k n .  

The order of  6 mod 19  is a divisor of  19 18  . The only divisors of 18 are 

1, 2, 9 and 18: 

 2 96 36 17, 6 10077696 1 mod 19     

Hence the order of  6 mod 19  is 9 not 18. 

 

13. We are asked to prove the order of a modulo  1na   is n. 

Proof. 
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Clearly    1 1n na a   which implies that  

     1 0 mod 1 1 mod 1n n n na a a a      . 

We need to show n is the smallest positive integer such that the above holds. 

Suppose   1 mod 1m na a   where m n . Then  

  1 0 mod 1m na a    which implies    1 1n ma a  . 

By Theorem (1.2) (e): 

If   and 0x y y   then x y  

We have 1 1n ma a   . However this is impossible because m n . Hence n 

is the smallest positive integer which implies that the order of a modulo 

 1na   is n. This completes our proof. 

■ 
 

14.  We are given that the order of a modulo n is k where 2mn   and we need to 

prove that 12mk  . 

Proof. 
We use Corollary (6.5) to prove this result: 

Let the integer a modulo n have order k, then  k n .  

Let k be the order of n. We are given that 2mn   so by Proposition (5.9): 

 
1 2

1 1 11 1 1
r

n n
p p p


                             

  

We have   11 12 2 1 2 2
2 2

m m m m 
                 

. Therefore by the above Corollary we 

have 12mk   which is our required result. 

■ 
 

15. We need to show that if a modulo n has order k then ma  also has order k 

 gcd , 1k m  . 

Proof. 
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  . We are given that  gcd , 1k m  . Therefore by applying Proposition 

(6.8): 

Let a modulo n have order k. Then the integer sa  has order 

 gcd ,
k
s k

  where s is a positive integer 

We have the order of ma  is   1gcd ,
k k k
m k

  .  

  . Now we assume that ma  also has order k  and need to show that  

 gcd , 1k m  . 

Suppose the  gcd , 1k m g  . Then the order of ma  by the above 

Proposition (6.8) is  

  Because  1
gcd ,

k k k g
gm k

       

However, we are assuming that the order of ma  is k. We cannot have order of 
ma  is k and it is less than k. Hence our supposition  gcd , 1k m g   must be 

wrong so  gcd , 1k m  . This completes our proof. 

■ 
 

16. We are given that r  is a primitive root of the prime p and we need to show 

that the least non-negative residue of  modmr p  is also a primitive root of p 

   gcd , 1 1m p   . 

Proof. 

Since we are given r is a primitive root of p so the order of  modr p  is  

  1p p   . 

By the result of previous question we have the order of mr  is 1p    

 gcd , 1 1m p   . Hence  modmr p  has the same order 1p  because  

 gcd , 1 1m p   . This completes our proof. 

■ 
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17. We are required to prove that if n has a primitive root then it has exactly 

  n   incongruent primitive roots.  

Proof. 

Very similar to the proof of the previous question. 

Let r be a primitive root of n. Then the elements of  
  2 3, , , , nS r r r r   

belong to the reduced residue system modulo n.  

Let mr S  then mr  is a primitive root of p if it has order  n .  

By Corollary (6.9) we have 
mr  has order  n     gcd , 1m n   

It is the number of integers m which are relatively prime to  n . This is given 

by the Euler phi function. Hence the number of primitive roots of n is   n  . 

This completes our proof. 
■ 

 

18. We are asked to prove that if a has order 1n   modulo n then n is prime. 

Proof. 

We are given that a has order 1n   modulo n which gives 

 1 1 modna n  . 

This implies that the smallest positive index of a with this property is 1n  . By 

the definition of the Euler totient function   1n n    for 1n  . Why? 

Because the definition is 

    gcd , 1 and  1n Card m m n m n     . 

And this set can have at most 1n  elements. Hence a must be primitive root 

of n. Why? 

Because we are given that the order of a modulo n is 1n .  

Since a is primitive root so   1n n   . By Proposition (5.2): 

n  is prime     1n n    
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Thus n is prime. This completes our proof. 
 ■ 

 

19. We are asked to solve  6 11 mod 19x  . Since 19 is prime so it has a primitive 

root. We need to find one. Let us test 2 for a primitive root. The factors of 

 19 19 1 18     are 1, 2, 3, 6, 9 and 18. We have 

 52 32 13 mod 19   

 62 2 13 26 7 mod 19     

 92 8 7 56 1 mod 19      

Hence 2 is a primitive root of 19.  

Taking index to the base 2 of the given equation  6 11 mod 19x   yields 

    6
2 2ind ind 11 mod 18x     

    2 26 ind ind 11 mod 18x    (*) 

We need to find  2ind 11 . We know that  27 49 11 mod 19   so squaring 

 62 7 mod 19  gives 

 12 22 7 11 mod 19  . 

Therefore  2ind 11 12  and substituting this into (*) gives 

   26 ind 12 mod 18x  . 

The  gcd 6, 18 6  and 6 18  so the given congruence equation has 6 

incongruent solutions. Dividing through by 6 gives 

     2 2ind 2 mod 3 ind 2 3x x k    . 

Hence, we have    2ind 2 3 2, 5, 8, 11, 14, 17 mod 18x k   . Therefore 

 

2 5 8 11 14 172 , 2 , 2 , 2 , 2 , 2
4, 13, 13 8, 1 4, 4 8, 4 7
4, 13, 9, 15, 6, 10 mod 19

x 
       


 

Our solutions in ascending order are  4, 6, 9, 10, 13, 15 mod 19x  .  
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We also need to solve the Diophantine equation 6 11 19x y  . Substituting 

4, 6, 9, 10, 13, 15x   into 6 11 19x y   and transposing gives 

6 4096 114 4096 11 19 215
19

y y        

6
46 656 11

6 46 656 11 19 2455
19

y y


       

6
531 441 11

9 531 441 11 19 27 970
19

y y


       

6
1 000 000 11

10 1 000 000 11 19 52 631
19

y y


       

6
4 826 809 11

13 4 826 809 11 19 254 042
19

y y


       

6
11 390 625 11

15 11 390 625 11 19 599 506
19

y y


       

Our solutions are  4, 215x y  ,  6, 2455x y  ,  9, 27 970x y  , 

 10, 52 631x y  ,  13, 254 042x y   and  15, 599 506x y  . 

  

20. The positive integer 15n   has no primitive roots because the relatively prime 

integers with 15 are  , 14, 7, 8, 11, 131, 2, 4  which means that  15 8  and the 

order of these is given in the table below: 
Integer 1 2 4 7 8 11 13 14 

Order 1 4 2 4 4 2 4 2 
 

None of the relatively prime integers have order 8 so 15 has no primitive roots.  
 

21. We need to show that mn  does not necessarily have primitive roots given that 

both m and n have primitive roots. 

How? 

Produce a counter example. 

Let 3m   and 5n   then both have primitive roots. Why? 

Because 3 and 5 are prime and by Primitive Root Theorem (6.21): 

Every prime has a primitive root. 
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However we have shown in the previous question that 3 5 15m n     does 

not  have primitive roots. 

 

22. (i) We are asked to prove  22 1 mod 2
m mr

  for 3m  . 

Proof. 
We use mathematical induction. 
Let 3m   then we need to check that 

 3 22 2 1 mod 8r r

  .   

How do we know  2 1 mod 8r   is true for all r? 

Well we are given that r is odd so let 2 1r j  . Then we have 

 
 

22 22 1 4 4 1
4 1 1

r j j j
j j

    
  

 

Now the product of two consecutive numbers  1j j   must be even, say 2l . 

Therefore we have 

   2 4 1 1 4 2 1 8 1r j j l l       . 

Hence  2 1 mod 8r   which implies that the result is true for 3m  . 

Assume the result is true for m k , that is 

   22 1 mod 2 �
k kr

  

Required to prove the result for 1m k  : 

 12 11 mod 2
k kr
     

Examining the left hand side of this 

   1 2 1 2 2 2
2 2 2 2 2 1mod 2
k k k k kr r r r
          (*) 

We have an expression for 
22k

r


from (�). Using this and the definition of 
congruence  

22 1 2
k kr 

   where   is an integer. 

Squaring this gives 

     2 2 2 22 2

2

2 1

1 2 1

2 1 2 2 2 1

2 2 2 1
2 2 2 1
2 2 1

k k k k

k k

k k

k k

r   
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Note that we have  2 2
2 1 2 1

integer

2 2 1
k k kr  
       

. Hence 

   2 2
2 1 12 integer 1 0 1 1 mod 2

k k kr
          . 

Substituting this into (*) yields 

   1 2 2
2 2 11 mod 2
k k kr r
     

which is our required result. 

By mathematical induction we have  22 1 mod 2
m mr

  for 3m  . 

■ 
(ii) In this part we are asked to prove that the integer 2m  for 3m   has no 
primitive roots. How do we prove this? 
By contradiction and then use the result of part (i). 
Proof. 
Suppose r is a primitive root of 2m . Then clearly r is odd because we can only 

have an order provided  gcd , 2 1mr  . 

The order of  mod 2mr  is given by the Euler phi function of 2m  which is 

  112 2 1 2
2

m m m 
       

. 

Therefore, we have that the order of  mod 2mr  is 12m  which implies that 

 12 1 mod 2
m mr

 . 

where 12m  is the smallest positive integer such that the result holds. 

However, by part (i) we have  22 1 mod 2
m mr

  and the index 2 12 2m m  . 

This is a contradiction because we have found a lower index therefore our 
supposition of r being a primitive root of 2m  must be false.  
Thus 2m  for 3m   has no primitive roots. 

■ 
 

23. We are asked to show if , 2m n   and  gcd , 1m n   then the integer mn  

has no primitive roots. 

Proof. 

Let r be a primitive root of mn . This implies the order of r is  

       Because gcd , 1mn m n m n         
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By Euler’s theorem we have 
   1 modmr m    and     1 modnr n   

By Proposition (5.10): 

For  2,k k  is an even integer. 

We have  n  is an even integer so 
 
2
n

 is an integer. Therefore 

  
 

       
 2 2 2 1 mod

n n m n
mmr r r m

   
    . 

Similarly, 
 
2
m

 is an integer so  

  
 

       
 2 2 2 1 mod

m m n m
nnr r r n

   
    . 

Using the result given in the hint on  
   

 2 1 mod
m n

r m
 

   and  
   

 2 1 mod
n m

r n
 

 . 

Yields 
   

   2 1 mod LCM of ,   is  
m n

r mn m n mn
 

      

We have an index 
       2
m n

m n
 

   so r cannot be a primitive root of 

modulo mn .  

Hence the integer mn  has no primitive roots. 
■ 

 

24. We need to prove that 
 

 2 1 mod
n

r n


  given that n has no primitive roots. 

Proof. 
The integer n must be composite because by result of question 17: 

Every prime p has  1p   incongruent primitive roots. 

If kn p  for odd prime p and 2k   then it has a primitive root. Why? 
By Theorem (6.27): 

kp  for 1k   has a primitive root 
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 If 2 rn p  then by Proposition (6.30): 

There is a primitive root of 2 kp  where 1k  . 

 The integer 2 rn p  has primitive roots. Hence kn p  and 2 kn p . 
Let r be a member of the reduced residue system modulo n. 
We consider two cases of n for which there are no primitive roots. 

Case 1 For 2mn  . 

If 2mn   for 3m   then by the result of question 22 (i): 

 22 1 mod 2
m mr

  

We have   12 2m m   therefore 
  1

2
2 2 2
2 2

m m
m

 
  . Putting this into the 

above yields 
 

 2
2

2 2 1 mod 2
m

m mr r


   .      

Hence for 2mn   we have our required result. 

Case II For n mk  where  gcd , 1m k   and , 2m k  . 

By the solution of the previous question we have: 
   

 2 1 mod
m k

r mk
 

  

Recall that        n mk m k      because  gcd , 1m k  . Hence we have 

     
 2 2 1 mod

m k mk

r r mk
  

   

This is our required result for n mk .  
This completes our proof. 

■ 

 


