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Complete Solutions to Exercise 2.2

1. (a) We are given 5    which is the floor function of 5. Clearly 5 5     .

(b) Although 5.999 is closer to 6 but the floor function of 5.999 is given by

5.999 5    
(c) Evaluating 22.459e  (3dp) so

22.459 22e         
(d) Similarly, we have 23.14 23e          .

(e) This time, we are given the ceiling function 7    . Therefore

7 7    
(f) Now we have to evaluate 7.0000000001    . Although 7.0000000001 7 but

because we are dealing with the ceiling function so

7.0000000001 8    
(g) Similar to part (c) but this time we are given the ceiling function so

22.459 23e         
(h) We have

23.14 24e         

2. (a) We are asked to compute 6.3 6.3           :

 6.3 6.3 6 6 0              
(b) This time, we need to find 6.3 6.3           :

 6.3 6.3 6 7 1               
(c) Similarly, we have

 6.3 6.3 7 6 13                 
(d) We have to compute

 6.3 6.3 7 7 14                 

3. For x x          any integer x because

integer integer= integer         

4. (a) The graph of 1x     is very similar to the graph of x    but shifted up by

one unit:
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(b) Similarly we have the graph of 1x     :

(c) We are asked to plot the graph of 1x     which is the graph of x    but

shifted up by one unit:

1x    

1x    

1x    
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(d) Similarly, we have the graph of 1x     :

5. (a) We are asked to show 2 2x x            is false. This means we have to

produce a counter example. Let 6.3x   then

 2 2 6.3 12.6 13x                    
 2 2 6.3 2 7 14x                 

Hence 2 2x x            [Not Equal].

(b) To show that 2 2x x            is false we need an example where this

statement is not true. Let 6.3x  then

2 2 6.3 12.6 13x                   
2 2 6.3 2 7 14x              

Therefore 2 2x x            [Not Equal].

(c) We are asked to show 1x x           . Let 2x  (could be any integer) then

2 2  but  1 2 1 3x x                          
Thus 1x x           .

6. We are given 1n x n   where n is a natural number.

(a) We need to prove that x n     .

Proof.

By the definition of ceiling function (2.8):

 min : , integerx n n x n     

1x    
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We can rewrite the given 1n x n   as 1n x n   . By applying this

definition we have

   min : , integer min , 1, 2,x n n x n n n n n          

This completes our proof.

■
(b) This time, we have to prove 1x n      .

Proof.

By the definition of the floor function (2.7):

 max : , integerx n n x n     

From the given 1n x n   and considering the left inequality we have

   max : , integer max , 3, 2, 1 1x n n x n n n n n            

Note that n is not a member of this set because we are given x n or n x .

This completes our proof.

■

7. (a) We need to show x n     provided 1x n x   .

Proof.

By the definition of the floor function (2.7):

 max : , integerx n n x n     

We are given the inequality 1x n x   . Adding 1 to the left-hand

inequality gives

1x n 
From the given inequality on the right-hand we have n x . Combining

these, n x and 1x n  , together yields

1n x n  
Applying the floor function definition to this inequality 1n x n   :

 
 

max : , integer

max , 2, 1,

x n n x n

n n n n

     
   

This completes our proof.

■
(b) This time we are asked to show 1x n      given 1x n x   .

Proof.

We need to use the definition of ceiling function (2.8):



Complete Solutions 2.2 Page 5 of 11

 min : , integerx n n x n     

Since we are given 1x n x   so n is less than x, which implies that the

next integer 1n  is greater than x. Why?

Adding 1 to the given inequality 1x n x   on the left-hand-side gives

1x n 
The right-hand inequality is n x . Combining our results we have

1n x n   or other way 1n x n  

Applying the ceiling function definition (2.8) we have

 
 

min : , integer

min 1, 2, 1

x n n x n

n n n

     
    

This completes our proof.

■

8. We use corollary (2.10) in each case:

If 1n  is composite then it has a prime divisor p such that p n    
.

(a) By using this corollary with 161n  we have

161 12.69 12         
The prime numbers below 12 are 2, 3, 5, 7 and 11. Clearly 2, 3 and 5 are not

factors of 161. However 7 is a factor of 161 because

161
23  or  161 7 23

7
  

(b) We need to test 203 for compositeness:

203 14.24780685 14         
The prime factors below 14 are 2, 3, 5, 7, 11 and 13.

We can easily check that 2, 3 and 5 are not factors of 203. But

203
29

7
 or 203 7 29 

(c) We need to check that 1003 is composite or not:

1003 31.67017524 31         
The prime factors below 31 are 2, 3, 5, 7, 11, 13, 17, 19, 23, 29 and 31.

Trialing these prime factors we find that 17 is a factor of 1003 because



Complete Solutions 2.2 Page 6 of 11

1003
59

17
 or 1003 17 59 

You can check that 59 is prime as well. Hence the prime decomposition of

1003 is 17 59 .

(d) We are given the integer 1009. Similarly we have

1009 31.76476035 31         
We trial the same prime factors as part (c). We find that none of these are

factors of 1009 therefore 1009 is a prime.

9. (a) We are given  2 3 5 7 1    which is equal to 209. Clearly 2, 3, 5 and 7

cannot be factors of this number  2 3 5 7 1    because dividing by these

numbers leaves a remainder of 1 . We apply Corollary (2.10):

If 1n  is composite then it has a prime divisor p such that p n    
.

If we have a prime factor p then it must satisfy 209 14p     
. So the only

primes left which are less than 14 are 11 and 13. We find that

209
19

11
 or 209 11 19 

(b) This time we are given the number  2 3 5 7 1 211     . Again 2, 3, 5

and 7 cannot be factors of 211. Also the prime factors less than 211 14    
are 11 and 13. We find that 211 cannot by divided by 11 and 13. By the

contrapositive of Corollary (2.10) we conclude that 211 is prime.

10. We need to test the number  2 3 5 7 11 13 1 30 031       for

compositeness. If 30 031 is composite then it must have a prime factor p

which satisfies

30031 173.2945469 173p           
One prime factor of 30 031 must be less than or equal to 173. Clearly 2, 3, 5,

7, 11 and 13 cannot be factors of 30 031 because

 2 3 5 7 11 13 1 30 031      

We try the primes after this; 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, …

The last prime 59 in this list is actually a factor of 30 031 because
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30031
509 or  30031 59 509

59
  

Since we have found a factor of 30 031 so it is composite. (The prime

decomposition is 59 509 because 509 is also prime.)

11. We are asked to show that 32 1
n

 is composite.

Proof.

We use the following identity given in the hint to prove this:

  1 2 3 21 1 1m m m mx x x x x x x           provided m is odd

Clearly 3nm  is odd so applying this to the given integer 32 1
n

 yields

  3 3 1 3 2 3 3 22 1 2 1 2 2 2 2 2 1
n n n n          

Since 2 1 3  so 3 is a factor of 32 1
n

 . We also need to show that the

other factor is greater than 1, that is

 3 1 3 2 3 3 22 2 2 2 2 1 1
n n n        

How?

Well the left – hand side 32 1 3
n

  for every natural number n. Why?

Because 32 2
n

 for every natural number n.

Thus, for all n we have 32 1
n

 is composite.

■

12. First note that  10
log x is an increasing function, this means as we increase x

so  10
log x increases as you can see from the graph below:
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(a) We need to find  10
log 101 
   without using a calculator. From the

properties of logs we have

   210 10
log 100 log 10 2  and    310 10

log 1000 log 10 3 

Since 101 lies between 100 and 1000 therefore

 10
2 log 101 3    

The ceiling function is given by:

(2.8)  min : , integerx n n x n     

By this definition we have  10
log 101 
   is an integer which is greater than or

equal to  10
log 101 so  10

log 101 3     .

(b) We are asked to find  2
log 63 
   . Using the properties of logs we have

   52 2
log 32 log 2 5  and    62 2

log 64 log 2 6 

Because 63 lies between 32 and 64 so  2
5 log 63 6  . The question says we

need to find the floor function of this  2
log 63 so  2

log 63 5     .

(c) We need to find  log x
n

n 
  

given 1n x n   . Using log properties

     log log because  log 1x
n n n

n x n x n                   
Since 1n x n   so the floor function of x is 1n  (see question 6(b)). We

have

 log 1x
n

n n     

13. (a) We are asked to show  10
log 1N     gives the number of digits of 1N  .

Proof.

Let
1 1 0n n

N a a a a  where the a’s are the digits of N and
n

a is non-zero.

(The actual number of digits of N is 1n  because our right-hand digit is
0

a ).

We can rewrite this as

  1
1 1 0 1 1 0

0 10n
n n n n

N a a a a a a a a 
     

Because shifting the decimal point in
1 1 0

0
n n

a a a a  by 1n  places to the

right gives
1 1 0 1 1 0

0
n n n n

a a a a a a a a N     .

Taking logs of both sides gives
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   
         
         
     

1
10 10 1 1 0

1
10 1 1 0

10 1 1 0

10 1 1 0

log log 0 10

log 0 log 10 Applying log log log

log 0 1 log 10 Applying log log

log 0 1 Because log 10 1

n
n n

n
n n

n
n n

n n

N a a a a

a a a a A B A B

a a a a n A n A

a a a a n











  
        
       
       









Now  1 1 0
log 0

n n
a a a a  lies between 1 and 0, that is

 10 1 1 0
1 log 0 0

n n
a a a a   

Why?

Because
n

a is non-zero so
1 1 0

0
n n

a a a a  lies strictly between 0 and 1 (cannot

equal 0 or 1) . Substituting this inequality

 10 1 1 0
1 log 0 0

n n
a a a a   

into the above

   
 

 
10 1 1 0

10 10 1 1 0

1 log 0 0

log log 0 1

n n

n n

a a a a

N a a a a n





   

   






Gives

   10
1 1 logn n N     and    10

log 0 1 1N n n    

Putting these together

 10
log 1n N n  

By the definition of the floor function and result of question 6 part (b) we

have

 10
log N n    

Note that
1 1 0n n

N a a a a  has 1n  digits so  10
log 1N    

gives the number

of digits of N.

■
(b) The number of digits of Googol 10010 can be found using the result of

part (a)  10
log 1N    

. Let 10010N  then

       100
10 10

log 10 1 100 log 10 1 By log log

100 1 1 100 1 101

nA n A                 
        

The term Googol has 101 digits.

(c) The number of digits in  10010
10 can be found similarly to part (b):

       
10010 100

10 10

100 100

log 10 1 10 log 10 1 By log log

10 1 10 1

nA n A
                      

      
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The number of digits in Googolplex is 10010 1 .

(d) (i) We are asked to find the number of digits of
74 207 211

2 . Taking log of

this gives

 74 207 211

10
log 2

Trying to evaluate this on our calculator gives an error. How can we find this?

Convert to the base 2 by using the given hint:

   
 

74 207 211

274 207 211

10

2

log 2 74 207 211
log 2

3.322log
22 338 59

1
.41

0
6  

Taking the floor and adding one gives the number of digits

 74 207 211

10
22 338 596.41 1 22 338 596 1 22 338 597log 2 1       

    
 

(ii) How many digits does
74 207 211

2 have in base 2 number system?

Well using log to the base 2 we have

   74 207 211

2 2

1

log 2 1 74 207 211 log 2 1 74 207 211 1 74 207 212



 
 

       
 
  



14. (i) We need to show that x x         
is false. Consider 12.5x  (any

positive non – integer will do):

 12.5 12 3.464 3dp

12.5 3.464 3

x

x

           
                

Hence x x         
[Not equal].

(ii) We are asked to prove x x             
for 0x  .

Proof.

Clearly if x is a non-negative integer then the given result holds because

x x     .

Let x n    
where n is a natural number.

If x is positive real number but not an integer then there exists positive

integer n such that 1n x n   . Then by the result of question 6(b) we

have 1x n      . We have

1x n              
(*)
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By applying the following square root property for 0, 0a b  :

a b a b  

To 1n x n   we have 1n x n   .

By using the definition of floor function (2.7):

 max : , integerx m m x m     

On this x 
  

gives

 
 

max : , integer

max 3 , 2 , 1 1

x m m x m

n n n n

     
                          



By (*) we have 1x n              
therefore


From above

1x n x                     

This completes our proof.

■
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