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192 Chapter 7. Applied Mathematics andATA

7

Problem Set 7.1, page 393

1 Suppose your pulse is measured atb1 = 70 beats per minute, thenb2 = 120, then
b3 = 80. The least squares solution to three equationsv = b1, v = b2, v = b3 with
AT = [1 1 1] is v̂ = (ATA)−1ATb = . Use calculus and projections :

(a) MinimizeE = (v − 70)2 + (v − 120)2 + (v − 80)2 by solvingdE/dv = 0.

Solution(a) dE
dv = 2(v − 70) + 2(v − 120) + 2(v − 80) = 0 at the minimizinĝv.

Cancel the2’s : 3v = 70 + 120 + 80 = 270 so v̂ = vaverage = 90

(b) Projectb = (70, 120, 80) ontoa = (1, 1, 1) to find v̂ = aTb/aTa.

Solution(b) The projection ofb onto the line througha is p = av̂ :

b =

[
70
120
80

]
a =

[
1
1
1

]
v̂ =

aTb

aTa
=

270

3
= 90.

2 SupposeAv = b hasm equationsaiv = bi in one unknownv. For the sum of squares
E = (a1v − b1)

2 + · · ·+ (amv − bm)2, find the minimizinĝv by calculus. Then form
ATAv̂ = ATb with one column inA, and reach the samêv.

Solution To minimizeE we solvedE/dv = 0. Form = 3 equationsaiv = bi,

dE

dv
= 2a1(a1v − b1) + 2a2(a2v − b2) + 2a3(a3v − b3) = 0 is zero when

v = v̂ =
a1b1 + a2b2 + a3b3

a21 + a22 + a23
=

aTb

aTa
.

WhenA has one column,ATAv̂ = ATb is the same as(aTa)v̂ = (aTb).

3 With b = (4, 1, 0, 1) at the pointsx = (0, 1, 2, 3) set up and solve the normal equation
for the coefficientŝv = (C,D) in the nearest lineC+Dx. Start with the four equations
Av = b that would be solvable if the points fell on a line.

Solution The unsolvable equation hasm = 4 points on a line : onlyn = 2 unknowns.

Av = b is




1 0
1 1
1 2
1 3



[

C
D

]
=




4
1
0
1


 leading toATAv̂ = ATb :

[
4 6
6 14

] [
Ĉ

D̂

]
=

[
6
4

]
gives

[
Ĉ

D̂

]
=

1

20

[
14 −6
−6 4

] [
6
4

]
=

1

2a

[
60

−20

]
=

[
3

−1

]

The closest line to the four points isb = 3 − x.

4 In Problem 3, find the projectionp = Av. Check that those four values lie on the line
C +Dx. Compute the errore = b− p and verify thatATe = 0.

Solution The projectionp = Av̂ is
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p =




1 0
1 1
1 2
1 3



[

3
−1

]
=




3
2
1
0


 with error e = b− p =




1
−1
−1
1




The best lineC + Dx = 3 − x does producep = (3, 2, 1, 0) at the four points
x = 0, 1, 2, 3.

Multiply this e byAT to getATe =

[
0
0

]
as expected.

5 (Problem 3 by calculus) Write downE = ||b−Av||2 as a sum of four squares : the last
one is(1 − C − 3D)2. Find the derivative equations∂E/∂C = ∂E/∂D = 0. Divide
by 2 to obtainATAv̂ = ATb.

Solution MinimizeE = (4−C)2 +(1−C −D)2 +(−C − 2D)2 +(1−C − 3D)2.

The partial derivatives are∂E/∂C = 0 and∂E/∂D = 0 at the minimum:

−2(4− C)− 2(1− C −D)− 2(−C − 2D)− 2(1− C − 3D) = 0

−2(1− C −D)− 4(−C − 2D)− 6(1− C − 3D) = 0

Factoring out−2 and collecting terms this is the same equationATAv̂ = ATb !

6− 4C − 16D = 0
4− 6C − 14D = 0

or

[
4 6
6 14

] [
Ĉ

D̂

]
=

[
6
4

]
.

6 For the closest parabolaC+Dt+Et2 to the same four points, write down4 unsolvable
equationsAv = b for v = (C,D,E). Set up the normal equations forv̂. If you fit the
best cubicC +Dt+ Et2 + Ft3 to those four points (thought experiment), what is the
error vectore ?

Solution The parabolaC +Dt+ Et2 fits the4 points exactly ifAv = b :

t = 0 C + 0D + 0E = 4
t = 1 C + 1D + 1E = 1
t = 2 C + 2D + 4E = 0
t = 3 C + 3D + 9E = 1

A =




1 0 0
1 1 1
1 2 4
1 3 9


 .

ATA =

[
4 6 14
6 14 36
14 36 98

]
.φATb =

[
4 + 1 + 0 + 1
0 + 1 + 0 + 3
0 + 1 + 0 + 9

]
=

[
6
4
10

]
.

The cubicC +Dt+ Et2 + Ft3 can fit4 points exactly, witherror = zero vector.
7 Write down three equations for the lineb = C + Dt to go throughb = 7 at

t = −1, b = 7 at t = 1, andb = 21 at t = 2. Find the least squares solution
v̂ = (C,D) and draw the closest line.

Solution

[
1 −1
1 1
1 2

][
C
D

]
=

[
7
7

21

]
.The solution̂x =

[
9
4

]
comes from

[
3 2
2 6

][
C
D

]
=

[
35
42

]
.

8 Find the projectionp = Av̂ in Problem7. This gives the three heights of the closest
line. Show that the error vector ise = (2,−6, 4).

Solution p = Ax̂ = (5, 13, 17) gives the heights of the closest line. The error is
b− p = (2,−6, 4). This errore hasPe = Pb− Pp = p− p = 0.
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9 Suppose the measurements att = −1, 1, 2 are the errors2,−6, 4 in Problem8. Com-
pute v̂ and the closest line to these new measurements. Explain the answer : b =
(2,−6, 4) is perpendicular to so the projection isp = 0.

Solution If b = previous errore thenb is perpendicular to the column space ofA.
Projection ofb is p = 0.

10 Suppose the measurements att = −1, 1, 2 areb = (5, 13, 17). Computev̂ and the
closest linee. The error ise = 0 because thisb is .

Solution If b = Ax̂ = (5, 13, 17) thenx̂ = (9, 4) ande = 0 sinceb is in the column
space ofA.

11 Find the best lineC +Dt to fit b = 4, 2,−1, 0, 0 at timest = −2,−1, 0, 1, 2.

Solution The least squares equation is

[
5 0
0 10

] [
C
D

]
=

[
5

−10

]
.

Solution:C = 1, D = −1. Line 1− t. Symmetrict’s ⇒ diagonalATA

12 Find theplane that gives the best fit to the4 valuesb = (0, 1, 3, 4) at the corners
(1, 0) and(0, 1) and(−1, 0) and(0,−1) of a square. At those4 points, the equations
C +Dx+ Ey = b areAv = b with 3 unknownsv = (C,D,E).

Solution



1 1 0
1 0 1
1 −1 0
1 0 −1



[
C
D
E

]
=



0
1
3
4


 hasATA =

[
4 0 0
0 2 0
0 0 2

]
and ATb =

[
8

−2
−3

]
.

The solution(C,D,E) = (2,−1, 32 ) gives the best plane2− x− 3
2y.

13 With b = 0, 8, 8, 20 at t = 0, 1, 3, 4 set up and solve the normal equationsATAv =
ATb. For the best straight lineC+Dt, find its four heightspi and four errorsei. What
is the minimum valueE = e21 + e22 + e23 + e24 ?

Solution A =



1 0
1 1
1 3
1 4


 andb =




0
8
8
20


 giveATA =

[
4 8
8 26

]
andATb =

[
36
112

]
.

ATAx̂ = ATb gives
E = ‖e‖2 = 44

x̂ =

[
1
4

]
andp = Ax̂ =




1
5
13
17


 ande = b− p =



−1
3

−5
3




14 (By calculus) Write downE = ||b − Av||2 as a sum of four squares—the last one is
(C + 4D − 20)2. Find the derivative equations∂E/∂C = 0 and∂E/∂D = 0. Divide
by 2 to obtain the normal equationsATAv̂ = ATb.

Solution E = (C + 0D)2 + (C + 1D − 8)2 + (C + 3D − 8)2 + (C + 4D − 20)2.
Then∂E/∂C = 2C + 2(C + D − 8) + 2(C + 3D − 8) + 2(C + 4D − 20) = 0
and∂E/∂D = 1 · 2(C + D − 8) + 3 · 2(C + 3D − 8) + 4 · 2(C + 4D − 20) = 0.

These normal equations∂E/∂C = 0 and∂E/∂D = 0 are again

[
4 8
8 26

] [
C
D

]
=

[
36
112

]
.

15 Which of the four subspaces contains the error vectore ? Which containsp ? Which
containŝv ?
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Solution The errore is contained in the nullspaceN(AT), sinceATe = 0. The
projectionp is contained in the column spaceC(A). The vector̂v of coefficients can
be any vector inRn.

16 Find the heightC of the besthorizontal line to fit b = (0, 8, 8, 20). An exact fit
would solve the four unsolvable equationsC = 0, C = 8, C = 8, C = 20. Find
the4 by 1 matrixA in these equations and solveATAv̂ = ATb.

Solution E = (C − 0)2 + (C − 8)2 + (C − 8)2 + (C − 20)2 andAT = [ 1 1 1 1 ].

ATA = [ 4 ]. ATb = [ 36 ] and(ATA)−1ATb = 9 = bestC. e = (−9,−1,−1, 11).

17 Write down three equations for the lineb = C + Dt to go throughb = 7 at
t = −1, b = 7 at t = 1, and b = 21 at t = 2. Find the least squares solution
v̂ = (C,D) and draw the closest line.

Solution

[
1 −1
1 1
1 2

][
C
D

]
=

[
7
7

21

]
.The solution̂x =

[
9
4

]
comes from

[
3 2
2 6

][
C
D

]
=

[
35
42

]
.

18 Find the projectionp = Av̂ in Problem17. This gives the three heights of the closest
line. Show that the error vector ise = (2,−6, 4). Why isPe = 0 ?

Solution p = Ax̂ = (5, 13, 17) gives the heights of the closest line. The error is
b− p = (2,−6, 4). This errore hasPe = Pb− Pp = p− p = 0.

19 Suppose the measurements att = −1, 1, 2 are the errors2,−6, 4 in Problem18. Com-
pute v̂ and the closest line to these new measurements. Explain the answer : b =
(2,−6, 4) is perpendicular to so the projection isp = 0.

Solution If b = errore thenb is perpendicular to the column space ofA. Projection
p = 0.

20 Suppose the measurements att = −1, 1, 2 areb = (5, 13, 17). Computev̂ and the
closest line ande. The error ise = 0 because thisb is ?

Solution If b = Ax̂ = (5, 13, 17) thenx̂ = (9, 4) ande = 0 sinceb is in the column
space ofA.

Questions 21–26 ask for projections onto lines. Also errorse = b − p and matricesP .

21 Project the vectorb onto the line througha. Check thate is perpendicular toa :

(a) b =

[
1
2
3

]
and a =

[
1
1
1

]
(b) b =

[
1
3
1

]
and a =

[ −1
−3
−1

]
.

Solution(a) The projectionp is

p = a
aTb

aTa
=

[
1
1
1

]
6

3
=

[
2
2
2

]
e = b−p =

[ −1
0
1

]
perpendicular to

[
1
1
1

]
.

Solution(b) In this case the projection is

p = a
aTb

aTa
=

[ −1
−3
−1

]
−11

−11
=

[
1
3
1

]
and e = b− p =

[
0
0
0

]
.
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22 Draw the projection ofb ontoa and also compute it fromp = v̂a :

(a)b =

[
cosθ
sinθ

]
anda =

[
1
0

]
(b) b =

[
1
1

]
anda =

[
1

−1

]
.

Solution (a) The projection ofb = (cos θ, sin θ) ontoa = (1, 0) is p = (cos θ, 0)

Solution (b) The projection ofb = (1, 1) ontoa = (1,−1) isp = (0, 0) sinceaTb = 0.

23 In Problem22 find the projection matrixP = aaT/aTa onto each vectora. Verify
in both cases thatP 2 = P . Multiply Pb in each case to find the projectionp.

SolutionP1=

[
1 0
0 0

]
andp = P1b =

[
cos θ
0

]
. P2=

1

2

[
1 −1

−1 1

]
andp = P2b =

[
0
0

]
.

24 Construct the projection matricesP1 andP2 onto the lines through thea’s in Problem
22. Is it true that(P1 + P2)

2 = P1 + P2 ? Thiswouldbe true ifP1P2 = 0.

Solution The projection matricesP1 andP2 (note correctionP2 notP − 2) are

P1 =
aaT

aTa
=

[
1 0
0 0

]
P2 =

aaT

aTa
=

1

2

[
1 −1

−1 1

]
.

It is not truethat(P1+P2)
2 = P1+P2. The sum of projection matrices isnot usually

a projection matrix.

25 Compute the projection matricesaaT/aTa onto the lines througha1 = (−1, 2, 2)
anda2 = (2, 2,−1). Multiply those two matricesP1P2 and explain the answer.

Solution P1 =
1

9

[
1 −2 −2

−2 4 4
−2 4 4

]
, P2 =

1

9

[
4 4 −2
4 4 −2

−2 −2 1

]
.

P1P2 = zero matrix becausea1 is perpendicular toa2.

26 Continuing Problem25, find the projection matrixP3 ontoa3 = (2,−1, 2). Verify that
P1 + P2 + P3 = I. The basisa1,a2,a3 is orthogonal !

SolutionP1+P2+P3 =
1

9

[
1 −2 −2

−2 4 4
−2 4 4

]
+
1

9

[
4 4 −2
4 4 −2

−2 −2 1

]
+
1

9

[
4 −2 4

−2 1 −2
4 −2 4

]
= I.

We canadd projections ontoorthogonal vectors. This is important.

27 Project the vectorb = (1, 1) onto the lines througha1 = (1, 0) anda2 = (1, 2). Draw
the projectionsp1 andp2 and addp1 + p2. The projections do not add tob because
thea’s are not orthogonal.

Solution The projections of(1, 1) onto the lines through(1, 0) and(1, 2) arep1 =
(1, 0) andp2 = (3/5, 6/5) = (0.6, 1.2). Thenp1 + p2 6= b.

28 (Quick and recommended) SupposeA is the 4 by 4 identity matrix with its last column
removed.A is 4 by 3. Projectb = (1, 2, 3, 4) onto the column space ofA. What shape
is the projection matrixP and what isP?

Solution A=



1 0 0
0 1 0
0 0 1
0 0 0


, P =square matrix=



1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0


, p=P



1
2
3
4


 =



1
2
3
0


.
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29 If A is doubled, thenP = 2A(4ATA)−12AT. This is the same asA(ATA)−1AT.
The column space of2A is the same as . Is v̂ the same forA and2A?

Solution2A has the same column space asA. Samep. But x̂ for 2A is half of x̂ for A.

30 What linear combination of(1, 2,−1) and(1, 0, 1) is closest tob = (2, 1, 1)?

Solution 1
2 (1, 2,−1) + 3

2 (1, 0, 1) = (2, 1, 1). So b is in the plane: no errore.
Projection showsPb = b.

31 (Important) If P 2 = P show that(I−P )2 = I−P . WhenP projects onto the column
space ofA, I − P projects onto which fundamental subspace ?

Solution If P 2 = P then(I − P )2 = (I−P )(I−P ) = I−PI−IP+P 2 = I − P .
WhenP projects onto the column space,I − P projects onto theleft nullspace.

32 If P is the 3 by 3 projection matrix onto the line through(1, 1, 1), thenI − P is the
projection matrix onto .

Solution I − P is the projection onto the planex1 + x2 + x3 = 0, perpendicular to
the direction(1, 1, 1) :

I − P =

[
1 0 0
0 1 0
0 0 1

]
− 1

3

[
1 1 1
1 1 1
1 1 1

]
=

1

3

[
2 −1 −1

−1 2 −1
−1 −1 2

]
.

33 Multiply the matrix P = A(ATA)−1AT by itself. Cancel to prove thatP 2 = P .
Explain whyP (Pb) always equalsPb: The vectorPb is in the column space so its
projection is .

Solution
(
A(ATA)−1AT

)2
= A(ATA)−1(ATA)(ATA)−1AT = A(ATA)−1AT.

So P 2 = P . Geometric reason :Pb is in the column space (whereP projects).
Then its projectionP (Pb) is Pb for everyb. SoP 2 = P .

34 If A is square and invertible, the warning against splitting(ATA)−1 does not apply.
ThenAA−1(AT)−1AT = I is true.WhenA is invertible, why isP = I ande = 0 ?

Solution If A is invertible then its column space is all ofRn. SoP = I ande = 0.

35 An important fact aboutATA is this: If ATAx = 0 then Ax = 0. New proof:
The vectorAx is in the nullspace of . Ax is always in the column space of

. To be in both of those perpendicular spaces,Ax must be zero.

Solution If ATAx = 0 thenAx is in thenullspace ofAT. But Ax is always in the
column space ofA. To be in both of those perpendicular spaces,Ax must be zero. So
A andATA have thesame nullspace.

Notes on mean and variance and test grades
If all grades on a test are90, the mean ism = 90 and the variance isσ2 = 0. Suppose

the expected grades areg1, . . . , gN . Thenσ2 comes fromsquaring distances to the mean:

Mean m =
g1 + · · ·+ gN

N
Variance σ2 =

(g1 −m)2 + · · ·+ (gN −m)2

N

After every test my class wants to knowm andσ. My expectations are usually way off.
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36 Show thatσ2 also equals1N (g21 + · · ·+ g2N )−m2.

Solution Each term(gi −m)2 equalsg2i − 2gim+m2, so

σ2 =
(sum ofg2i )− 2m(sum ofgi) +Nm2

N
=

(sum ofg2i )− 2mNm+Nm2

N

=
(sum ofg2i )

N
−m2.

37 If you flip a fair coinN times (1 for heads,0 for tails) what is the expected numberm
of heads ? What is the varianceσ2 ?

Solution For a fair coin you expectN/2 heads inN flips. The varianceσ2 turns out
to beN/4.

Problem Set 7.4, page 422

1 What solution to Laplace’s equation completes “degree3” in the table of pairs of solu-
tions ? We have one solutionu = x3 − 3xy2, and we need another solution.

Solution Start withs = −y3. Thensyy = −6y, and therefore we needsxx = 6y.
Integrating twice with respect tox gives 3y2x. Therefore the second function is
s(x, y) = −y3 + 3x2y.

2 What are the two solutions of degree4, the real and imaginary parts of(x + iy)4 ?
Checkuxx + uyy = 0 for both solutions.

Solution Expanding(x+ iy)4 gives

(x+ iy)4 = x4 − 6x2y2 + y4 + (4x3y − 4xy3)i

Therefore the two solutions would be :

u(x, y) = x4 − 6x2y2 + y4 and s(x, y) = 4x3y − 4xy3

Checking the first solution :

∂2(x4 − 6x2y2 + y4)

∂x2
+
∂2(x4 − 6x2y2 + y4)

∂y2
= (12x2−12y2)+(−12x2+12y2) = 0

Checking the second solution :

∂2(4x3y − 4xy3)

∂x2
+

∂2(4x3y − 4xy3)

∂y2
= (24xy − 0) + (0− 24xy) = 0

3 What is the secondx-derivative of(x+ iy)n ? What is the secondy-derivative? Those
cancel inuxx + uyy becausei2 = −1.

Solution The secondx-derivative of(x+ iy)n is :

∂2(x+ iy)n

∂x2
= n(n− 1)(x+ iy)n−2

The secondy-derivative of(x+ iy)n cancels that because

∂2(x+ iy)n

∂y2
= i · i · n(n− 1)(x+ iy)n−2 = −n(n− 1)(x+ iy)n−2
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4 For the solved2 × 2 example inside a4 × 4 square grid, write the four equations (9)
at the four interior nodes. Move the known boundary values0 and4 to the right hand
sides of the equations. You should seeK2D on the left side multiplying the correct
solutionU = (U11, U12, U21, U22) = (1, 2, 2, 3).

Solution The equations at the interior node would be :

4U1,1 − U2,1 − U0,1 − U1,2 − U1,0 = 0

4U1,2 − U2,2 − U0,2 − U1,3 − U1,1 = 0

4U2,1 − U3,1 − U1,1 − U2,2 − U2,0 = 0

4U2,2 − U3,2 − U1,2 − U2,3 − U2,1 = 0

Substituting the known boundary values leaves :

4U1,1 − U2,1 − U1,2 = 4

4U1,2 − U2,2 − U1,1 = 8

4U2,1 − U1,1 − U2,2 = 0

4U2,2 − U1,2 − U2,1 = 4

Writing this in matrix form gives :



4 −1 0 −1
−1 4 −1 0
0 −1 4 −1

−1 0 −1 4







U1,1

U1,2

U2,1

U2,2


 =




4
8
0
4


 and




U1,1

U1,2

U2,1

U2,2


 =




2
3
1
2




5 Suppose the boundary values on the4 × 4 grid change toU = 0 on three sides and
U = 8 on the fourth side. Find the four inside values so that each one is the average of
its neighbors.

Solution The values at the16 nodes will be

0 0 0 0

0 1
2

1
2 0

0 3
2

3
2 0

0/4 4 4 0/4

Notice that the corner boundary valuesdo not enter the 5-point equations around
interior points. Every interior value must be the average ofits four neighbors. By
symmetry the two middle columns must be the same.

6 (MATLAB) Find the inverse (K2D)−1 of the4 by 4 matrix displayed for the square grid.

Solution The circulant matrixK2D on page 422 has a circulant inverse :

(K2D)−1 =
1

24




7 2 1 2
2 7 2 1
1 2 7 2
2 1 2 7


 .
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7 Solve this Poisson finite difference equation (right side6= 0) for the inside values
U11, U12, U21, U22. All boundary values likeU10 andU13 are zero. The boundary
hasi or j equal to0 or 3, the interior hasi andj equal to1 or 2 :

4Uij − Ui−1,j − Ui+1,j − Ui,j−1 − Ui,j+1 = 1 at four inside points.

Solution The interior solution to the Poisson equation (on this smallgrid) is

0 0 0 0

0 1
2

1
2 0

0 1
2

1
2 0

0 0 0 0

On a larger gridUij will not be constant in the interior.

8 A 5× 5 grid has a3 by 3 interior grid :9 unknown valuesU11 toU33. Create the9× 9
difference matrixK2D.

Solution Order the points by rows to getU11, U12, U13, U21, U22, U23, U31, U32, U33.
ThenK2D is symmetric with3 by 3 blocks :

K2D =

[
A −I 0

−I A −I
0 −I A

]
A =

[
4 −1 0

−1 4 −1
0 −1 4

]

9 Use eig(K2D) to find the nine eigenvalues ofK2D in Problem 8. Those eigenvalues
will be positive ! The matrixK2D is symmetric positive definite.

Solution eig(K2D) in Problem 8 produces 9 eigenvalues between0 and4 :

The eigenvalues come from eig(K2D) and explicitly from equation (11). Notice that
pairs of eigenvalues add to8. The eigenvalue distribution is symmetric aroundλ = 4:

1.1716 2.5828 2.5828 4.0 4.0 4.0 5.4142 5.4142 6.8284

10 If u(x) solvesuxx = 0 andv(y) solvesvyy = 0, verify thatu(x)v(y) solves Laplace’s
equation. Why is this only a4-dimensional space of solutions ? Separation of variables
does not give all solutions—only the solutions with separable boundary conditions.

Solution
If

∂2u

∂x2
= 0 and

∂2v

∂y2
= 0 then

∂2u(x)v(y)

∂x2
+

∂2u(x)v(y)

∂y2
= v(y)

∂2u(x)

∂x2
+ u(x)

∂2v(y)

∂y2

= v · 0 + u · 0 = 0

Thereforeu(x)v(y) solves Laplace’s equation. But the only solutions found this way
areu(x)v(y) = (A+Bx)(C +Dy).



7.5. Networks and the Graph Laplacian 201

Problem Set 7.5, page 428

Problems1 − 5 are about complete graphs. Every pair of nodes has an edge.

1 With n = 5 nodes and all edges, find the diagonal entries ofATA (the degrees of
the nodes). All the off-diagonal entries ofATA are−1. Show the reduced matrixR
without row5 and column5. Node5 is “grounded” andv5 = 0.

Solution The complete graph (all edges included) has no zeros inATA :

ATA =




4 −1 −1 −1 −1
−1 4 −1 −1 −1
−1 −1 4 −1 −1
−1 −1 −1 4 −1
−1 −1 −1 −1 4


 Singular!

The grounded matrix would be

(ATA)reduced =




4 −1 −1 −1
−1 4 −1 −1
−1 −1 4 −1
−1 −1 −1 4


 Invetible!

2 Show that thetrace of ATA (sum down the diagonal= sum of eigenvalues)
is n2 − n. What is the trace of the reduced (and invertible) matrixR of sizen− 1 ?

Solution ATA is n by n and each diagonal entry isn − 1. Therefore the trace is
n(n− 1) = n2 − n. The reduced matrixR hasn− 1 diagonal entries, each still equal
to n− 1. Therefore the trace is(n− 1)(n− 1) = n2 − 2n+ 1.

3 For n = 4, write the 3 by 3 matrix R = (Areduced)
T(Areduced). Show that

RR−1 = I whenR−1 has all entries14 off the diagonal and24 on the diagonal.

Solution
Reduced matrixR =

[
3 −1 −1

−1 3 −1
−1 −1 3

]

R by its proposed inverse gives
[

3 −1 −1
−1 3 −1
−1 −1 3

]

4 For everyn, the reduced matrixR of sizen − 1 is invertible. Show thatRR−1 = I
whenR−1 has all entries1/n off the diagonal and2/n on the diagonal.

Solution

1

4

[
2 1 1
1 2 1
1 1 2

]
=

1

4

[
6− 1− 1 3− 2− 1 3− 1− 2

−2 + 3− 1 −1 + 6− 1 −1 + 3− 2
−2− 1 + 3 −1− 2 + 3 −1− 1 + 6

]
= I.

5 Write the6 by 3 matrixM = Areducedwhenn = 4. The equationMv = b is to be
solved by least squares. The vectorb is like scores in6 games between4 teams (team
4 always scores zero; it is grounded). Knowing the inverse ofR = MTM , what is the
least squares rankinĝv1 for team1 from solvingMTM v̂ = MTb?

Solution Remove column4 of A when node4 is grounded (x4 = 0).
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M =




−1 1 0
−1 0 1
0 −1 1

−1 0 0
0 −1 0
0 0 −1




has independent columns

The least squares solution̂v to Mv = b comes fromMTM v̂ = MTb. This v̂ gives
the predicted point spreads when all teams play all other teams. The first component̂v1
would come from the first row of(MTM)−1 multiplying byMTb. Note that

MTM =

[
3 −1 −1

−1 3 −1
−1 −1 3

]
and (MTM)−1 =

1

4

[
2 1 1
1 2 1
1 1 2

]
.

6 For the tree graph with4 nodes,ATA is in equation (1). What is the3 by 3 matrix
R = (ATA)reduced? How do we know it is positive definite?

Solution The reduced form ofATA removes row4 and column4 :

Singular ATA =




1 −1 0 0
−1 2 −1 0
0 −1 2 −1
0 0 −1 1


 reduces to invertible

[
1 −1 0

−1 2 −1
0 −1 2

]

The first is positive semidefinite (A has dependent columns). the second is positive
definite (the reducedA has 3 independent columns).

7 (a) If you are given the matrixA, how could you reconstruct the graph?

Solution Each row ofA tells you an edge in the graph.

(b) If you are givenL = ATA, how could you reconstruct the graph (no arrows) ?

Solution Each nonzero off the main diagonal ofATA tells you an edge.

(c) If you are givenK = ATCA, how could you reconstruct the weighted graph?

Solution Each nonzero off the main diagonal tells you the weight of that edge.

8 FindK = ATCA for a line of3 resistors with conductancesc1 = 1, c2 = 4, c3 = 9.
Write Kreducedand show that this matrix is positive definite.

Solution A circle of three resistors has3 edges and3 nodes :

ATCA =

[ −1 1 0
0 −1 1
1 0 −1

][
1

4
9

][ −1 0 1
1 −1 0
0 1 −1

]

=

[
5 −4 −1

−4 13 −9
−1 −9 10

]
is only semidefinite

(ATCA)reduced =

[
−1 1 0
0 −1 1

] [ 1
4

9

][ −1 0
1 −1
0 1

]
=

[
5 −4

−4 13

]

.

The determinant tests5 > 0 and(5)(13) > 42 are passed.
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9 A 3 by 3 square grid hasn = 9 nodes andm = 12 edges. Number nodes by rows.

(a) How many nonzeros among the81 entries ofL = ATA?

Solution The 9 nodes ordered by rows have2, 3, 2, 3, 4, 3, 2, 3, 2 neighbors around
them. Those add to24 nonzeros off the diagonal. The9 diagonal entries make33
nonzeros out of92 = 81 entries inL = ATA.

(b) Write down the9 diagonal entries in the degree matrixD : they are not all4.

Solution Those9 numbers are the degrees of the9 nodes (= diagonal entries inATA).

(c) Why does the middle row ofL = D −W have four−1’s ? NoticeL = K2D !

Solution The middle node in the grid has4 neighbors.

10 Suppose all conductances in equation (5) are equal toc. Solve equation (6) for the
voltagesv2 andv3 and find the currentI flowing out of node1 (and into the ground at
node4). What is the “system conductance”I/V from node1 to node4 ?

This overall conductanceI/V should be larger than the individual conductancesc.

Solution The reduced equation (6) with conductances= c is
[

3c −c
−c 2c

] [
v2
v3

]
=

[
cV
cV

]
and

[
v2
v3

]
=

[
0.6V
0.8V

]
.

Then the flows on the five edges in Figure 7.6 useA in equation (2). Remember the
minus sign :

−cAv = −c




−1 1 0 0
−1 0 1 0
0 −1 1 0

−1 0 0 1
0 −1 0 1







V
0.6V
0.8V

0


 = cV




0.4
0.2

−0.2
1.0
0.6




The total flow (on edges1+2+4 out of node1, or on edges3+4 into the grounded node
4, is I = 1.6cV . The overall system conductance is1.6c, greater than the individual
conductancec on each edge.

11 The multiplicationATA can be columns ofAT times rows ofA. For the tree with
m = 3 edges andn = 4 nodes, each (column times row) is(4 × 1)(1 × 4) = 4 × 4.
Write down those three column-times-row matrices and add togetL = ATA.

Solution Suppose the 3 tree edges go out of node1 to nodes2, 3, 4. (The problem
allows to choose other trees, including a line of4 nodes.) Then

A =

[ −1 1 0 0
−1 0 1 0
−1 0 0 1

]
ATA =




3 −1 −1 −1
−1 1 0 0
−1 0 1 0
−1 0 0 1


 = sum of (columns ofAT)( rows of A)

=



−1
1
0
0


 [−1 1 0 0 ] +



−1
0
1
0


 [−1 0 1 0 ] +



−1
0
0
1


 [−1 0 0 1 ] .
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12 A graph with two separate3-node trees isnot connected. Write its 6 by 4 incidence
matrixA. Find two solutions toAv = 0, not just one solutionv = (1, 1, 1, 1, 1, 1). To
reduceATA we must groundtwo nodes and remove two rows and columns.

Solution The incidence matrix for two3-node trees is

A =

[
Atree 0
0 Atree

]
with Atree =

[
1 1 0

−1 0 1

]
(for example)

The columns ofAtree add to zero so we have2 independent solutions toAv = 0 :

v =




1
1
1
0
0
0




and




0
0
0
1
1
1




come fromAtree

[
1
1
1

]
=

[
0
0
0

]
.

13 “Element matrices” from column times row appear in thefinite element method.
Include the numbersc1, c2, c3 in the element matricesK1,K1,K3.

Ki = (row i of A)T (ci) (row i of A) K = ATCA = K1 + K2 + K3.

Write the element matrices that add toATA in (1) for the4-node line graph.

ATA =




[
K1

]
[
K2

]

[
K3

]



=

assembly of the nonzero
entries ofK1 +K2 +K3

from edges1, 2, and3

Solution The three “element matrices” for the three edges come from multiplying the
three columns ofAT by the three rows ofA. ThenATA equals

=



−1
1
0
0


 [−1 1 0 0 ] +




0
−1
1
0


 [ 0 −1 1 0 ] +




0
0

−1
1


 [ 0 0 −1 1 ] .

When the diagonal matrixC is included, those are multiplied byc1, c2, andc3. Those
products produce2 by 2 blocks of nonzeros in4× 4 matrices :

K1 = c1




1 −1
−1 1


 K2 = c2


 1 −1

−1 1


 K3 = c3


 1 −1

−1 1




ThenATCA = K1 + K2 + K3. This ‘assembly” of the element stiffness matrices
just requires placing the nonzeros correctly into the final matrixATCA.

14 An n by n grid hasn2 nodes. How many edges in this graph ? How many interior
nodes ? How many nonzeros inA and inL = ATA ? There are no zeros inL−1 !

Solution An n byn grid hasn horizontal rows (n−1 edges on each row) andn vertical
columns (n − 1 edges down each column). Altogether2n(n − 1) edges. There are
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(n − 2)2 interior nodes—a square grid with the boundary nodes removed to reducen
to n− 2.

Every edge produces2 nonzeros (−1 and+1) in A. ThenA has4n(n − 1) nonzeros.
The matrixATA has sizen2 with n2 diagonal nonzeros—and off the diagonal ofATA
there are two−1’s for each edge : altogethern2 + 4n(n− 1) = 5n2 − 4n nonzeros
out ofn4 entries. Forn = 2, this means12 nonzeros in a4 by 4 matrix.

15 When onlye = C−1w is eliminated from the3-step framework, equation (??) shows

Saddle-point matrix
Not positive definite

[
C−1 A
AT 0

] [
w
v

]
=

[
b
f

]
.

Multiply the first block row byATC and subtract from the second block row :

After block elimination
[

C−1 A
0 −ATCA

] [
w
v

]
=

[
b

f −ATCb

]
.

After m positive pivots fromC−1, why does this matrix have negative pivots ?
The two-field problem forw andv is finding a saddle point, not a minimum.

Solution The three equationse = b − Av andw = Ce andATw = f reduce to two
equations whene is replaced byC−1w :

C−1w = b−Av
ATw = f

become

[
C−1 A
AT 0

] [
v
w

]
=

[
b
f

]
.

Multiply the first equation byATC to getATw = ATCb − ATCAv. Subtract from
the second equationATw = f , to eliminatew :

ATCb−ATCAv = f .

This gives the second row of the block matrix after elimination :[
C−1 A
0 −ATCA

] [
v
w

]
=

[
b
f −ATCb

]
.

The pivots of that matrix on the left side start with1/c1, 1/c2, . . . , 1/cm. Then we get
then pivots of−ATCA which arenegative, because this matrix is negative definite.

Altogether we are finding a saddle point(v,w) of the energy (quadratic function).
The derivative of that quadratic gives our linear equations. The block matrix in those
equations hasm positive eigenvalues andn negative eigenvalues.

16 The least squares equationATAv = ATb comes from the projection equation
ATe = 0 for the errore = b − Av. Write those two equations in the symmetric
saddle point form of Problem 7 (withf = 0).

In this casew = e because the weighting matrix isC = I.

Solution Ordinary least squares forAv = b separates the data vectorb in two perpen-
dicular parts :

b = (Av̂) + (b−Av̂) = (projection ofb) + (error inb).

The errore = b−Av satisfiesATe = ATb−ATAv = 0 (which means thatATAv =
ATb, the key equation). That equationdTe = 0 is Kirchhoff’s Current Law for flows in
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a network. It is a candidate for the “most important equationin applied mathematics”—
the conservation equation or continuity equation “flow in= flow out.”

In the form of Problem 15 (withC = I) the equations are[
I A
AT 0

] [
e
v

]
=

[
b
0

]
or

e+Av = b
ATe = 0 .

17 Find the three eigenvalues and three pivots and the determinant of this saddle point
matrix withC = I. One eigenvalue is negative becauseA has one column :

m = 2, n = 1

[
C−1 A
AT 0

]
=

[
1 0 −1
0 1 1

−1 1 0

]
.

Solution The eigenvalues come fromdet(M − λI) = 0 :
[

1− λ 0 −1
0 1− λ 1
−1 1 −λ

]
= −λ(1 − λ)2 − 2(1− λ) = 0 .

Then(1− λ)(λ2 − λ− 2) = 0 and(1− λ)(λ− 2)(λ+1) = 0 and the eigenvalues are
λ = 1,2,−1. Check the sum1 + 2 − 1 = 2 equal to the trace (sum down the main
diagonal1 + 1 + 0 = 2).

The determinant is the productλ1λ2λ3 = (1)(2)(−1) = −2. Noticem = 2 positive
λ’s andn = 1 negative eigenvalue.

Elimination finds the three pivots (which also multiply to givedetM = −2) :



1 0 −1

0 1 1

−1 1 0


→




1 0 −1

0 1 1

0 1 −1


 −→




1 0 −1

0 1 1

0 0 −2©


 .
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8

Problem Set 8.1, page 443

1 (a) To prove that cosnx is orthogonal to coskx whenk 6= n, use(cosnx) (coskx) =
1
2 cos(n+k)x+ 1

2 cos(n−k)x. Integrate fromx = 0 tox = π. What is
∫

cos2 kx dx?

(b) Correction From 0 to π, cosx is not orthogonal to sin 2x (the book wrongly
proposed

∫ π

0
cosx sinx dx, but this is zero). For orthogonality ofall sines and cosines,

the period has to be2π.

Solution (a)
π∫

0

(cosnx)(cos kx)dx =
1

2

π∫

0

cos(n+ k)x dx+
1

2

π∫

0

cos(n− k)x dx

=

[
sin(n+ k)x

2(n+ k)
+

sin(n− k)x

2(n− k)

]π

0

= 0 + 0

Solution (b)

π∫

0

(cos x)(sin 2x) dx =

π∫

0

(cosx)(2 sinx cosx) dx =

[
−2

3
cos3 x

]π

0

=
4

3
6= 0.

Non-orthogonality comes from

π∫

0

cosmx sinnxdx whenm− n is an odd number.

2 SupposeF (x) = x for 0 ≤ x ≤ π. Draw graphs for−2π ≤ x ≤ 2π to show
three extensions ofF : a2π-periodic even function and a2π-periodic odd function and
aπ-periodic function.

Solution

−2π 0 2π −2π 0 2π −2π 0 2π

3 Find the Fourier series on−π ≤ x ≤ π for

(a)f1(x) = sin3 x, an odd function (sine series, only two terms)

Solution (a) The fast way is to know the identitysin3 x = 3
4 sinx − 1

4 sin 3x. This
must be the Fourier sine series! It has only two terms.

More slowly, use Euler’s great formula to produce complex exponentials :

(sinx)3 =

(
eix − e−ix

2i

)3

=
e3ix − 3eix + 3e−ix − e−3ix

8i3
= −1

4
sin 3x+

3

4
sinx.

Or slowly compute the usual formulas
∫
sin3 x sinx dx and

∫
sin3 x sin 3x dx.
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(b) f2(x) = | sinx|, an even function (cosine series)

Solution (b)

a0 =
1

π

π∫

0

| sinx| dx =
2

π

ak =
1

2π

π∫

0

| sinx| cos kx dx = − 1

4π

[
cos(k − 1)x

k − 1
+

cos(k + 1)x

k + 1

]x=π

x=0

= 0 (oddk) or − 1

4π

[ −2

k − 1
+

−2

k + 1

]
=

k

π(k2 − 1)
(even k)

(c) f3(x) = x for −π ≤ x ≤ π (sine series with jump atx = π)

Solution (c) bk =
1

π

π∫

−π

x sin kx dx =

[
1

π k2
sin kx− x

π k
cos kx

]π

−π

Solution (c) bk = − 1

k
(cos kπ + cos(−kπ)) = − 2

k
(−1)k.

4 Find the complex Fourier seriesex =
∑

cke
ikx on the interval−π ≤ x ≤ π.

The even part of a function is12 (f(x)+ f(−x)), so thatfeven(x) = feven(−x). Find the
cosine series forfevenand the sine series forfodd. Notice the jump atx = π.

Solution
ck =

1

2π

π∫

−π

exe−ikx dx =
1

2π

π∫

−π

ex(1−ik) dx

=

[
1

2π(1− ik)
ex(1−ik)

]π

−π

=
eπ(1−ik) − e−π(1−ik)

2π(1− ik)

The even part of the function is :
1

2
(ex + e−x). The cosine coefficients are

a0 =
1

4π

π∫

−π

(ex + e−x) dx =
1

2π
(eπ − e−π)

ak =
1

2π

π∫

−π

(ex + e−x) cos kx dx =
2k cosh[π] sin[kπ] + 2 cos[kπ] sinh[π]

π + k2π

The odd part of the function is:
1

2
(ex − e−x). The sine series is:

bk =
1

2π

π∫

−π

(ex − e−x) sin kx dx =
2 cosh[π] sin[kπ]− 2k cos[kπ] sinh[π]

π + k2π

5 From the energy formula (21), the square wave sine coefficients satisfy

π(b21 + b22 + · · · ) =
∫ π

−π

|SW (x)|2 dx =

∫ π

−π

1 dx = 2π.
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Substitute the numbersbk from equation (8) to find thatπ2 = 8(1 + 1
9 + 1

25 + · · · ).
Solution The sine coefficients for the odd square wave are

bk =
4

π

(
1− (−1)k

2k

)
=

4

π

(
1

1
, 0,

1

3
, 0,

1

5
, 0, . . .

)

Energy identity givesπ2 = 8

∞∑

k=1

(
1− (−1)k

2k

)2

= 8

(
1 +

1

9
+

1

25
+ · · ·

)

6 If a square pulse is centered atx = 0 to give

f(x) = 1 for |x| < π

2
, f(x) = 0 for

π

2
< |x| < π,

draw its graph and find its Fourier coefficientsak andbk.

Solution

a0 =
1

2π

π/2∫

−π/2

dx =
1

2

ak =
1

π

π/2∫

−π/2

cos kx dx =
2

kπ
sin

kπ

2
= sin c

(
kπ

2

)

bk =
1

π

π/2∫

−π/2

sin kx dx = 0

7 Plot the first three partial sums and the functionx(π − x) :

x(π − x) =
8

π

(
sinx

1
+

sin 3x

27
+

sin 5x

125
+ · · ·

)
, 0 < x < π.

Why is1/k3 the decay rate for this function? What is its second derivative?

Solution The parabolay = x(π − x) = xπ − x2 starts aty(0) = 0 with slope
y ′(0) = π and second derivativey ′′(0) = −2. Its sine series makes it an odd function
xπ + x2 from −π to 0. This odd extension hassecond derivative= ±2. That jump
in y ′′ means that the Fourier coefficientsbk will decay like1/k3. (Remember1/k for
jumps iny(x) and1/k2 for jumps iny ′(x)—no jumps iny, y ′ for this example.)

8 Sketch the2π-periodic half wave withf(x) = sinx for 0 < x < π andf(x) = 0 for
−π < x < 0. Find its Fourier series.

Solution The function is not odd or even, so integrals must go from−π to π. The
function is zero from−π to 0 leaving only these integrals fora0, ak, bk :
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a0 =
1

2π

π∫

0

sinx dx =
1

2π
[− cosx]

π
0 =

1

π

ak =
1

π

π∫

0

sinx cos kx dx = − 1

2π

[
cos(1− k)x

1− k
+

cos(1 + k)x

1 + k

]π

0

=

[k even]
1

π

(
1

1− k
+

1

1 + k

)
=

2

π(1 − k2)
[and 0 for k odd]

bk =
1

π

π∫

0

sinx sin kx dx givesb1 =
1

2
and otherbk = 0.

9 SupposeG(x) has period2L instead of2π. ThenG(x + 2L) = G(x). Integrals
go from−L to L or from0 to 2L. The Fourier formulas change by a factorπ/L :

The coefficients inG(x) =
∞∑
−∞

Cke
ikπx/L are Ck =

1

2L

L∫

−L

G(x)e−ikπx/Ldx.

Derive this formula forCk : Multiply the first equation forG(x) by and
integrate both sides. Why is the integral on the right side equal to2LCk ?

Solution Multiply G(x) =
∞∑
−∞

Cke
ikπx/L by e−ikπx/L. Integrate.

L∫

−L

G(x)e−ikπx/L dx =

L∫

−L

e−ikπx/L
∞∑

−∞
Cke

ikπx/L dx

L∫

−L

G(x)e−ikπx/L dx = Ck

L∫

−L

dx = 2LCk (orthogonality)

Ck =
1

2L

L∫

−L

G(x)e−ikπx/L dx

10 ForGeven, use Problem 9 to find the cosine coefficientAk from (Ck + C−k)/2 :

Geven(x) =
∞∑
0
Ak cos

kπx

L
has Ak =

1

L

L∫

0

Geven(x) cos
kπx

L
dx.

Gevenis 1
2 (G(x) +G(−x)). Exception forA0 = C0 : Divide by2L instead ofL.

Solution The result comes directly from12 (Ck + C−k).

11 Problem 10 tells us thatak =
1

2
(ck + c−k) on the usual interval from0 to π.

Find a similar formula forbk from ck and c−k. In the reverse direction, find the
complex coefficientck in F (x) =

∑
cke

ikx from the real coefficientsak andbk.
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Solution Solution and correction We are comparing two ways to write a Fourier
series : ∞∑

−∞
cke

ikx = a0 +

∞∑

1

ak cos kx+

∞∑

1

bk sin kx

Pick out the terms fork and−k :
cke

ikx + c−ke
−ikx = ak cos kx+ bk sin kx

Use Euler’s formula to reach cosines/sines on both sides :
(ck + c−k) cos kx+ i(ck − c−k) sin kx = ak cos kx+ bk sin kx

This shows thatak = ck + c−k (correction from text ) andbk = i(ck − c−k).

Reverse Euler’s formula to reach complex exponentials on both sides :

cke
ikx + c−ke

−ikx =
1

2
ak(e

ikx + e−ikx) +
1

2i
bk(e

ikx − e−ikx)

This shows thatck =
1

2
ak +

1

2i
bk and c−k =

1

2
ak − 1

2i
bk.

Real functions with reala’s andb’s lead toc−k = ck (complex conjugates)

12 Find the solution to Laplace’s equation withu0 = θ on the boundary. Why is this the
imaginary part of2(z − z2/2 + z3/3 · · · ) = 2 log(1 + z)? Confirm that on the unit
circle z = eiθ, the imaginary part of2 log(1 + z) agrees withθ.

Solution The sine series of the odd functionf(θ) = θ has coefficientsbn =

2

π

π∫

0

θ sin nθ dθ =
2

π

[
1

n2
sin nθ − θ

n
cos nθ

]π

0

= −2 cos nπ

n
= 2

[
1

1
,−1

2
,
1

3
,−1

4
, · · ·

]

The solution to Laplace’s equation inside the circle has factorsrn :

u(r, θ) =
∑

bnr
n sin nθ = 2r sin θ − 2

2
r2 sin 2θ +

2

3
r3 sin 3θ . . .

= Im

[
2z − 2

2
z2 +

2

3
z3 . . .

]
= Im[2 log(1 + z)].

13 If the boundary condition for Laplace’s equation isu0 = 1 for 0 < θ < π andu0 = 0
for −π < θ < 0, find the Fourier series solutionu(r, θ) inside the unit circle. What is
u at the originr = 0 ?

Solution This 0-1 step functionu0(θ) equals12 +
1
2 (square wave). Equation (8) of the

text gives the Fourier sine series for the square wave :

0-1 Step Functionu0(θ) =
1

2
+

2

π

[
sin θ

1
+

sin 3θ

3
+

sin 5θ

5
+ · · ·

]

Then the solution to Laplace’s equation includes factorsrn :

u(r, θ) =
1

2
+

2

π

[
r sin θ

1
+

r3 sin 3θ

3
+

r5 sin 5θ

5
+ · · ·

]
=

1

2
at r = 0.
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14 With boundary valuesu0(θ) = 1 + 1
2e

iθ + 1
4e

2iθ + · · · , what is the Fourier series
solution to Laplace’s equation in the circle? Sum this geometric series.

Solution Inside the circle we see factorsrn (and1 + x+ x2 + · · · = 1/(1− x)) :

u(r, θ) = 1 +
1

2
reiθ +

1

4
r2e2iθ + · · · = 1/

(
1 − 1

2
reiθ

)
.

15 (a) Verify that the fraction in Poisson’s formula (30) satisfies Laplace’s equation.

Solution(a) We could verify Laplace’s equation inr, θ coordinates or recognize that
every term in the sum (29) solves that equation :

∂2 u

∂ r2
+

1

r

∂ u

∂ r
+

1

r2
∂2 u

∂θ2
= 0.

(b) Find the responseu(r, θ) to an impulse atx = 0, y = 1 (whereθ = π
2 ).

Solution(b) When the source is at the pointθ = π, this replacesr cos θ by −r cos θ
in equation (30). Then the response to a point source is infinite atr = 1, θ = π :

u(r, θ) =
1

2π

1 − r2

1 + r2 + 2r cos θ

16 With complex exponentials inF (x) =
∑

cke
ikx, the energy identity (21) changes to

π∫
−π

|F (x)|2 dx = 2π
∑ |ck|2. Derive this by integrating(

∑
cke

ikx)(
∑

cke
−ikx).

Solution All productseikxe−ikx integrate to zero except whenn = k :
π∫

−π

(cke
ikx)(cke

−ikx) dx = 2πckck = 2π|ck|2.

The total energy is the sum over allk.

17 A centered square wave hasF (x) = 1 for |x| ≤ π/2.

(a) Find its energy
∫
|F (x)|2 dx by direct integration

Solution(a)
∫

|F (x)|2 dx =

π/2∫

−π/2

dx = π.

(b) Compute its Fourier coefficientsck as specific numbers

Solution (b) ck =
1

2π

π/2∫

−π/2

e−ikx dx =

[
1

2π

e−ikx

−ik

]π/2

−π/2

=
1

2π ik

(
eikπ/2 − e−ikπ/2

)
=

1

π k
sin

(
kπ

2

)

(c) Find the sum in the energy identity (Problem 8).

Solution(c) sin
k π

2
=1, 0,−1, 0 (repeated) so2π

∑ |ck|2=
2

π

(
1

1
+
1

9
+

1

25
+· · ·

)
=1.
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18 F (x) = 1 + (cosx)/2 + · · ·+ (cosnx)/2n + · · · is analytic : infinitely smooth.

(a) If you take10 derivatives, what is the Fourier series ofd10F/dx10?

(b) Does that series still converge quickly ? Comparen10 with 2n for n = 210.

Solution(a) 10 derivatives ofcos nx gives−n10 cos nx :

d10F

dx10
= −1

2
cosx− 210

22
cos 2x− 310

23
cos 3x · · · − n10

2n
cos nx− · · ·

Solution(b) Yes,2n gets large much faster thann10 so the series easily converges.

At n = 210 = 1024 we have2n = 21024, much larger thann10 = 2100.

19 If f(x) = 1 for |x| ≤ π/2 andf(x) = 0 for π/2 < |x| < π, find its cosine coefficients.
Can you graph and compute the Gibbs overshoot at the jumps ?

Solution a0 = average value=
1

2

ak =
1

π

π/2∫

−π/2

cos kx dx =

[
1

π k
sin kx

]π/2

−π/2

=
2

π k
sin

kπ

2

20 Find all the coefficientsak andbk for F, I, andD on the interval−π ≤ x ≤ π :

F (x) = δ
(
x− π

2

)
I(x) =

∫ x

0

δ
(
x− π

2

)
dx D(x) =

d

dx
δ
(
x− π

2

)
.

Solution(a) Integratecos kx andsin kx againstδ(x− π
2 ) to get

a0 =
1

2π
ak =

1

π
cos

kπ

2
and bk =

1

π
sin

kπ

2

Solution(b) The integralI(x) is the unit step functionH(x− π
2 ) with jump atx = π

2 :

a0 =
1

2π

π∫

π/2

1 dx =
1

4

ak =
1

π

π∫

π/2

cos kx dx =
1

π k

(
sin kπ − sin

kπ

2

)
= − 1

π k
sin

kπ

2

bk =
1

π

π∫

π/2

sin kx dx = − 1

π k

(
cos kπ − cos

kπ

2

)

Solution(c) D(x) is the “doublet”= derivative of the delta functionδ
(
x− π

2

)
. You

must integrate by parts (andD(−π) = D(π) = 0 fortunately).

1

π

π∫

−π

D(x) cos kx dx =
1

π

π∫

−π

δ
(
x− π

2

)
(k sin kx) dx

Soak for D(x) is kbk in part (b) , andbk for D(x) is−kak in part (b) .
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21 For the one-sided tall box function in Example 4, withF = 1/h for 0 ≤ x ≤ h, what
is its odd part12 (F (x) − F (−x))? I am surprised that the Fourier coefficients of this
odd part disappear ash approaches zero andF (x) approachesδ(x).

Solution Every function has an even part and an odd part :

Feven(x) =
1

2
(F (x) + F (−x)) Fodd(x) =

1

2
(F (x)− F (−x)) F = Feven + Fodd

For the one-sided box function, those even and odd parts are

Feven(x) =
1

2h
for |x| ≤ h Fodd(x) = − 1

h
for −h ≤ x ≤ 0,+

1

h
for 0 < x ≤ h.

The Fourier coefficients ofFodd don’t really “disappear” ash → 0, because the energy∫
|Fodd|2 dx is growing. But it is growing in the high frequencies and any particular

coefficientck (at a fixed frequencyk) approaches zero ash → 0.

22 Find the seriesF (x) =
∑

cke
ikx for F (x) = ex on−π ≤ x ≤ π. That functionex

looks smooth, but there must be a hidden jump to get coefficients ck proportional to
1/k. Where is the jump ?

Solution Whenex is made into a periodic function there is a jump (or a drop) atx = π.
The drop fromeπ to e−π starts the next2π-interval. That drop shows up as a factor
multiplying the1/k decay that all jump functions show in their Fourier expansion :

ck =
1

2π

π∫

−π

exe−ikx dx =

[
1

2π

e(1−ik)x

1− ik

]π

x=−π

=
1

2π

eπ − e−π

1− ik
.

23 (a) (Old particular solution) SolveAy′′ +By′ + Cy = eikx.

(b) (New particular solution) SolveAy′′ +By′ + Cy =
∑

cke
ikx.

Solution This problem shows directly the power oflinearity to deal with complicated
forcing functions as combinations of simple forcing functionseikx :

Ay′′ +By′ + Cy = eikx has yp =
1

(ik)2A+ ikB + C
eikx = Yke

ikx

Ay′′ +By′ + Cy =
∑

cke
ikx has yp =

∑
ckYke

ikx.

Problem Set 8.2, page 453

1 Multiply the three matrices in equation (11) and compare with F . In which six entries
do you need to know thati2 = −1? This is(w4)

2 = w2. If M = N/2, why is
(wN )M = −1?

Solution

2 Why is rowi of F the same as rowN − i of F (numbered from0 to N − 1)?

Solution
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3 From Problem 8, find the4 by 4 permutation matrixP so thatF = PF . Check that
P 2 = I so thatP = P−1. Then fromFF = 4I show thatF 2 = 4P .

It is amazing thatF 4 = 16P 2 = 16I. Four transforms of anyc bring back16 c.
For allN , F 2/N is a permutation matrixP andF 4 = N2I.

Solution

4 Invert the three factors in equation (11) to find a fast factorization ofF−1.

5 F is symmetric. Transpose equation (11) to find a new Fast Fourier Transform.

Solution

6 All entries in the factorization ofF6 involve powers ofw = sixth root of 1:

F6 =

[
I D
I −D

] [
F3

F3

] [
P

]
.

Write down these factors with1, w, w2 in D and powers ofw2 in F3. Multiply!

Solution

7 Put the vectorc = (1, 0, 1, 0) through the three steps of the FFT to findy = Fc. Do
the same forc = (0, 1, 0, 1).

Solution

8 Computey = F8c by the three FFT steps forc = (1, 0, 1, 0, 1, 0, 1, 0). Repeat the
computation forc = (0, 1, 0, 1, 0, 1, 0, 1).

Solution

9 If w = e2πi/64 thenw2 and
√
w are among the and roots of 1.

Solution

10 F is a symmetric matrix. Its eigenvalues aren’t real. How is this possible ?

Solution

The three great symmetric tridiagonal matrices of applied mathematics areK, B, C.
The eigenvectors ofK,B, andC are discretesines, cosines, andexponentials. The eigen-
vector matrices give theDST, DCT, andDFT — discrete transforms for signal processing.
Notice that diagonals of the circulant matrixC loop around to the far corners.

K =




2 −1
−1 2 −1

· · ·
−1 2


 B =




1 −1
−1 2 −1

· · ·
−1 1




C =




2 −1 · −1
−1 2 −1

· · ·
−1 · −1 2




K11 = KNN = 2

B11 = BNN = 1

C1N = CN1 = −1
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11 The eigenvectors ofKN andBN are the discrete siness1, . . ., sN and the discrete
cosinesc0, . . ., cN−1. Notice the eigenvectorc0 = (1, 1, . . . , 1). Here aresk and
ck—these vectors are samples ofsin kx andcos kx from 0 to π.

(
sin

πk

N+1
, sin

2πk

N+1
, . . . , sin

Nπk

N+1

)
and

(
cos

πk

2N
, cos

3πk

2N
, . . . , cos

(2N−1)πk

2N

)

For2 by 2 matricesK2 andB2, verify thats1, s2 andc0, c1 are eigenvectors.

Solution

12 Show thatC3 has eigenvaluesλ = 0, 3, 3 with eigenvectorse0 = (1, 1, 1),
e1 = (1, w, w2), e2 = (1, w2, w4). You may prefer the real eigenvectors(1, 1, 1)
and(1, 0,−1) and(1,−2, 1).

Solution

13 Multiply to see the eigenvectorsek and eigenvaluesλk of CN . Simplify to λk =
2− 2 cos(2πk/N). Explain whyCN is only semidefinite. It is not positive definite.

Cek =




2 −1 −1
−1 2 −1

−1 2 −1
−1 −1 2







1
wk

w2k

w(N−1)k


 = (2 − wk − w−k)




1
wk

w2k

w(N−1)k


 .

Solution

14 The eigenvectorsek of C are automatically perpendicular becauseC is a
matrix. (To tell the truth,C has repeated eigenvalues as in Problem 12. There was
a plane of eigenvectors forλ = 3 and we chose orthogonale1 ande2 in that plane.)

Solution

15 Write the2 eigenvalues forK2 and the3 eigenvalues forB3. AlwaysKN andBN+1

have the sameN eigenvalues, with the extra eigenvalue for BN+1. (This is
becauseK = ATA andB = AAT.)

Solution

Problem Set 8.5, page 477

1 When the driving function isf(t) = δ(t), the solution starting from rest is theim-
pulse response. The impulse isδ(t), the response isy(t). Transform this equation
to find thetransfer function Y (s). Invert to find the impulse responsey(t).

y′′ + y = δ(t) with y(0) = 0 andy′(0) = 0

Solution Take the Laplace Transform ofy′′ + y = δ(t) with y(0) = y′(0) = 0 :

s2Y (s)− sy(0)− y ′(0) + Y (s) = 1

Y (s)(s2 + 1) = 1

Y (s) =
1

s2 + 1
is the transform ofy(t) = sin t.
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2 (Important) Find the first derivative and second derivativeof f(t) = sint for t ≥ 0.
Watch for a jump att = 0 which produces a spike (delta function) in the derivative.

Solution The first derivative ofsin(t) is cos(t), and the second derivative is− sin(t) + δ(t).
3 Find the Laplace transform of the unit box functionb(t) = {1 for 0 ≤ t < 1} =

H(t)−H(t− 1). The unit step function isH(t) in honor of Oliver Heaviside.

Solution The unit box function isf(t) = H(t)−H(t− 1)

The transform isF (s) =
1

s
− e−s

s
=

1

s
(1 − e−s)

The same result comes fromF (s) =

∞∫

0

f(t) e−st dt =

1∫

0

e−st dt.

4 If the Fourier transform off(t) is defined byf̂(k) =
∫
f(t)e−iktdt andf(t) = 0 for

t < 0, what is the connection between̂f(k) and the Laplace transformF (s)?

Solution The Fourier Transform is the Laplace Transform withs = ik : f̂(k) = F (ik).
5 What is the Laplace transformR(s) of the standardramp function r(t) = t ?

For t < 0 all functions are zero. The derivative ofr(t) is the unit stepH(t).
Then multiplyingR(s) by s gives .

Solution The Laplace TransformR(s) of the Ramp Functionr(t) = t is

R(s) =

∞∫

0

te−st dt = − te−st

s

∣∣∣∣
∞

0

−
∞∫

0

−e−st

s
dt = 0− e−st

s2

∣∣∣∣
∞

0

=
1

s2

Multiplying R(s) by s gives the Laplace transform1/s of the step function.
6 Find the Laplace transformF (s) of eachf(t), and the poles ofF (s):

(a) f = 1 + t (b) f = t cosωt (c) f = cos(ωt− θ)
(d) f = cos2 t (e) f = e−2t cos t (f) f = te−t sinωt

Solution(a) The transform off(t) = 1 + t has adouble poleats = 0 :

F (s) =

∞∫

0

(1 + t)e−st dt =

∞∫

0

e−st dt+

∞∫

0

te−st dt =
1

s
+

1

s2
=

1 + s

s2

Solution(b)

f(t) = t cos(ωt) = t

(
eiωt + e−iωt

2

)
=

teiωt

2
+

te−iωt

2
transforms to

F (s) =

∞∫

0

te(iω−s)t

2
dt+

∞∫

0

te−(iω−s)t

2
dt

=
−e−t(s−iω)(st− itω + 1)

2(s− iω)2

∣∣∣∣
∞

0

+
−e−t(s+iω)(st+ itω + 1)

2(s+ iω)2

∣∣∣∣
∞

0

=
1

2(s− iω)2
+

1

2(s+ iω)2
=

(s− iω)2 + (s+ iω)2

2(s− iω)2(s+ iω)2
=

s2 − ω2

(s2 + ω2)2

Poles occur ats = iω ands = −iω, the two exponents off(t).
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Solution(c) f(t) = cos(ωt− θ) = cosωt cos θ + sinωt sin θ transforms to

F (s) =
s

s2 + ω2
cos θ +

ω

s2 + ω2
sin θ

Poles occur ats = ±iω.

Solution(d)

f(t) = cos2(t) =
1

4
(eit + e−it)2 =

1

4
(e2it + 2 + e−2it)

F (s) =

∞∫

0

1

4
(e2it + e−2it + 2)e−st dt

= − 1

4(s− 2i)
+

1

4(s+ 2i)
+

1

2s
=

2s

4(s2 + 4)
+

1

2s
=

s2 + 2

s(s2 + 4)

Poles occur ats = 0 ands = ±2i. Another way is to writecos2 t =
1 + cos 2t

2

Solution(e)

f(t) = e−2t cos t =
1

2
e(i−2)t +

1

2
e−(i+2)t

F (s) =

∞∫

0

1

2
e(i−2)te−st dt+

∞∫

0

1

2
e−(i+2)te−st dt

=
1

2(−i+ 2 + s)
+

1

2(i+ 2 + s)
=

s+ 2

(s+ 2)2 + 1

Poles occur at the exponentss = −2± i in f(t).

Solution(f)
f(t) = te−t sinωt =

t

2i
e(iω−1)t − t

2i
e−(iω+1)t

F (s) =

∞∫

0

(
t

2i
e(iω−1)t − t

2i
e−(iω+1)t

)
e−st dt

=

∞∫

0

t

2i
e(iω−1−s)t dt−

∞∫

0

t

2i
e−(iω+1+s)t dt

=
ie−t(s−iω+1)(1 + t(s− iω + 1))

2(s− iω + 1)2
− ie−t(s+iω+1)(1 + t(s+ iω + 1))

2(s+ iω + 1)2

∣∣∣∣
∞

0

Poles ofF (s) occur ats = −1 ± iω, the exponents off(t).

7 Find the Laplace transforms of f(t) = next integer abovet andf(t) = t δ(t).

A staircasef(t) = [t] = H(t) +H(t − 1) +H(t − 2) + · · · = next integer abovet
is a sum of step functions. The transform is

1

s
+

e−s

s
+

e−2s

s
+ · · · = 1

s
(1 + e−s + e−2s + · · · ) = 1

s

(
1

1− e−s

)
.

The differentiation ruleL(tf(t)) = −F ′(s) with f(t) = δ(t) andF (s) = 1 gives

L(tδ(t)) = − d

ds
(1) = 0 (this is correct becausetδ(t) is the zero function).
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8 Inverse Laplace Transform: Find the functionf(t) from its transformF (s) :

(a)
1

s− 2πi
(b)

s+ 1

s2 + 1
(c)

1

(s− 1)(s− 2)

(d) 1/(s2 + 2s+ 10) (e) e−s/(s− a) (f) 2s

Solution(a) F (s) =
1

s− 2πi
is the transform off(t) = e2πit.

Solution(b) F (s) =
s

s2 + 1
+

1

s2 + 1
is the transform off(t) = cos t + sin t.

Solution(c) F (s) =
1

(s− 1)(s− 2)
=

1

s− 2
− 1

s− 1
is the transform off(t) =

e2t − et.

Solution(d)

F (s) =
1

s2 + 2s+ 10
=

1

(s+ 1 + 3i)(s+ 1− 3i)

=
i

6(s+ (1 + 3i))
− i

6(s+ (1− 3i))

f(t) =
i

6
e−(1+3i)t − i

6
e−(1−3i)t

= −e−t sin(3t)

3

Solution(e) F (s) =
e−s

s− a

f(t) = ea(t−1)H(t− 1) = shift of eat

Solution(f) F (s) = 2s

f(t) = 2 dδ/dt

9 Solvey′′+y = 0 fromy(0) andy′(0) by expressingY (s) as a combination ofs/(s2+1)
and1/(s2 + 1). Find the inverse transformy(t) from the table.

Solution y ′′ + y = 0

s2Y (s)− sy(0)− y ′(0) + Y (s) = 0

Y (s)(s2 + 1) = sy(0) + y ′(0)

Y (s) = y(0)
s

s2 + 1
+ y ′(0)

1

s2 + 1

The inverse transform isy(t) = y(0) cos(t) + y ′(0) sin(t).

10 Solvey ′′ + 3y ′ +2y = δ starting fromy(0) = 0 andy ′(0) = 1 by Laplace transform.
Find the poles and partial fractions forY (s) and invert to findy(t).

Solution The transform of
d2y

dt2
+ 3

dy

dt
+ 2y = δ(t) with y(0) = 0 andy ′(0) = 1 is
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s2Y (s)− sy(0)− y ′(0) + 3sY (s)− 3y(0) + 2Y (s) = 1

Y (s)(s2 + 3s+ 2)− 1 = 1

Y (s) =
2

(s+ 1)(s+ 2)

Y (s) =
2

s+ 1
− 2

s+ 2

y(t) = 2e−t − 2e−2t

11 Solve these initial-value problems by Laplace transform :

(a) y ′ + y=eiωt, y(0)=8 (b) y ′′ − y=et, y(0)=0, y ′(0)=0

(c) y ′ + y=e−t, y(0)=2 (d) y ′′ + y=6t, y(0)=0, y ′(0)=0

(e) y ′ − iωy=δ(t), y(0)=0 (f) my ′′+ cy ′+ky=0, y(0)=1, y ′(0)=0

Solution(a)

y ′ + y = eiωt with y(0) = 8

sY (s)− 8 + Y (s) =
1

s− iω

Y (s)(s+ 1) =
1

s− iω
+ 8

Y (s) =
1

(s+ 1)(s− iω)
+

8

s+ 1

Y (s) =
1

1 + iω

(
1

s− iω
− 1

s+ 1

)
+

8

s+ 1

Particular + null y(t) =
1

1 + iω

(
eiωt − e−t

)
+ 8e−t

Solution(b) y ′′ − y = et with y(0) = 0 and y ′(0) = 0

s2Y (s)− Y (s) =
1

s− 1

Y (s) =
1

(s− 1)(s+ 1)(s− 1)

=
1

4(s+ 1)
− 1

4(s− 1)
+

1

2(s− 1)2

y(t) =
e−t

4
− et

4
+

tet

2

Solution(c) y ′ + y = e−t with y(0) = 2

sY (s)− 2 + Y (s) =
1

s+ 1

Y (s) =
1

(s+ 1)2
+

2

s+ 1

y(t) = te−t + 2e−t

Solution(d)
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y ′′ + y = 6t with y(0) = y ′(0) = 0

s2Y (s) + Y (s) =
6

s2

Y (s)(s2 + 1) =
6

s2

Y (s) =
6

s2
− 3i

s+ i
+

3i

s− i

y(t) = 6t− 3ie−it + 3ieit = 6t− 6 sin t

Solution(e) y ′ − iωy = δ(t) with y(0) = 0

sY (s)− iωY (s) = 1

Y (s) =
1

s− iω

y(t) = eiωt

Solution(f) my ′′ + cy ′ + ky = 0 with y(0) = 1 andy ′(0) = 0

ms2Y (s)−msy(0) + csY (s)− cy(0) + kY (s) = 0

Y (s)(ms2 + cs+ k) = ms+ c

Y (s) =
ms+ c

ms2 + cs+ k
has the form

a

s− s1
+

b

s− s2

We used thisMathematicacommand to findy(t)

Simplify[InverseLaplaceTransform [(m ∗ s + c)/(m ∗ sˆ2 + c ∗ s + k), s, t]]

y(t) =

e−
(c+

√
c2−4km)t
2m

(
c

(
−1 + e

√
c2−4kmt

m

)
+

(
1 + e

√
c2−4kmt

m

)√
c2 − 4km

)

2
√
c2 − 4km

12 The transform ofeAt is (sI − A)−1. Compute that matrix (the transfer function)
whenA = [1 1; 1 1]. Compare the poles of the transform to the eigenvalues ofA.

Solution WhenA = [1 1; 1 1] we have :

(sI −A)−1 =

[
s− 1 −1
−1 s− 1

]−1

=
1

s2 − 2s

[
s − 1 1
1 s − 1

]
.

The poles of the system ares = 2 ands = 0, the eigenvalues ofA.

13 If dy/dt decays exponentially, show thatsY (s) → y(0) ass → ∞.

Solution
sY (s) =

∞∫

0

se−sty(t) dt (integrate by parts)

=

∞∫

0

e−st dy

dt
dt−

[
e−sty(t)

]∞
0

=

∞∫

0

e−st dy

dt
dt+ y(0) → y(0) as s → ∞

Example :
dy

dt
= e−at has sY (s)− y(0) =

1

s+ a
→ 0 as s → ∞



222 Chapter 8. Fourier and Laplace Transforms

14 Transform Bessel’s time-varying equationty ′′+y ′+ty = 0 usingL [ty] = −dY/ds to
find a first-order equation forY . By separating variables or by substituting
Y (s) = C/

√
1 + s2, find the Laplace transform of the Bessel functiony = J0.

Solution The transform ofty ′′ applies theL (t, y) rule toy ′′ instead ofy :
L (t, y ′′) = − d

ds
(transform ofy ′′) = − d

ds
(s2Y (s)− sy(0)− y ′(0)).

Apply this to the transform oft
d2y

dt2
+

dy

dt
+ ty = 0

−2sY (s)− s2
dY

ds
+ y(0) + sY (s)− y(0)− dY

ds
= 0

−sY (s)− s2
dY

ds
− dY

ds
= 0

sY (s) = −(s2 + 1)
dY

ds
dY

Y (s)
= − s ds

s2 + 1

log Y (s) = log

(
1√

s2 + 1

)

The transform of the Bessel solutiony = J0 is Y(s)=
1√

s2 + 1

15 Find the Laplace transform of a single arch off(t) = sinπt.

Solution A single arch ofsinπt extends fromt = 0 to t = 1 :

F (s) =

∞∫

0

f(t)e−stdt =

1∫

0

sin(πt)e−stdt =

1∫

0

eiπt−st

2i
dt−

1∫

0

e−iπt−st

2i
dt

=

[
eiπt−st

2i(iπ − s)
+

e−iπt−st

2i(iπ + s)

]t=1

t=0

=
eiπ−s − 1

2i(iπ − s)
+

e−iπ−s − 1

2i(iπ + s)

=

(−e−s − 1

2i

)(
1

iπ − s
− 1

iπ + s

)
=

(
e−s + 1

i

)(
s

π2 + s2

)

A faster and more direct approach : One arch of the sine curve agrees withsinπt +
unit shift of sinπt, because those cancel after one arch.

sinπt+ sinπ(t− 1) = sinπt+ sinπt cosπ = sinπt− sinπt = 0.

16 Your accelerationv ′ = c(v∗ − v) depends on the velocityv∗ of the car ahead :

(a) Find the ratio of Laplace transformsV ∗(s)/V (s).

(b) If that car hasv∗ = t find your velocityv(t) starting fromv(0) = 0.

Solution(a) Take the Laplace Transform of
dv

dt
= c(v∗ − v) assumingv(0) = 0 ;
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sV (s)− v(0) = cV ∗(s)− cV (s)

V (s)(s+ c) = cV ∗(s)

V ∗(s)

V (s)
=

s + c

c

Solution(b) If v∗(t) = t thenV ∗(s) =
1

s2
. Therefore

V (s)(s+ c) =
c

s2

V (s) =
c

s3 + cs2

=
1

c(s+ c)
− 1

cs
+

1

s2

v(t) =
e−ct

c
− 1

c
+ t

17 A line of cars hasv ′

n = c[vn−1(t− T )− vn(t− T )] with v0(t) = cosωt in front.

(a) Find the growth factorA = 1/(1 + iωeiωT /c) in oscillationvn = Aneiωt.

(b) Show that|A| < 1 and the amplitudes are safely decreasing ifcT < 1
2 .

(c) If cT > 1
2 show that|A| > 1 (dangerous) for smallω. (Usesin θ < θ.)

Human reaction time isT ≥ 1 sec and human aggressiveness isc = 0.4/sec.

Danger is pretty close. Probably drivers adjust to be barelysafe.

Solution(a)
dvn
dt

= c(vn−1(t− T )− vn(t− T )) with vn = Aneiωt

iωAneiωt = cAn−1eiω(t−T ) − cAneiω(t−T )

A
iωeiωT

c
= 1−A

A

(
1 +

iωeiωT

c

)
= 1

Solution(b)
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For |A| < 1 we need

∣∣∣∣1 +
iω

c
eiωT

∣∣∣∣ > 1

∣∣∣1− ω

c
sin(ωT ) +

ω

c
cos(ωT )

∣∣∣ > 1

(
1− ω

c
sin(ωT )

)2
+

ω2

c2
cos2(ωT ) > 1

1− 2ω

c
sin(ωT ) +

ω2

c2
sin2(ωT ) +

ω2

c2
cos2(ωT ) > 1

1− 2ω

c
sin(ωT ) +

ω2

c2
> 1

ω2

c2
>

2ω

c
sin(ωT )

Since sinωT < ωT, we are safe if
ω2

c2
>

2ω

c
ωT which is cT <

1

2
Solution(c) sinωT ≈ ωT when this number is small. Then the same steps show
|A| > 1 whencT > 1

2 .
18 For f(t) = δ(t), the transformF (s) = 1 is the limit of transforms of tall thin box

functionsb(t). The boxes have widthǫ → 0 and height1/ǫ and area1.

Inside integrals,b(t) =

{
1/ǫ for 0 ≤ t < ǫ
0 otherwise

}
approachesδ(t).

Find the transformB(s), depending onǫ. Compute the limit ofB(s) asǫ → 0.

Solution We begin by finding the transform of the box :

B(s) =

ǫ∫

0

1

ǫ
e−st dt =

−1

sǫ
e−st

∣∣∣∣
ǫ

0

=
1− e−sǫ

sǫ

We take the limit asǫ → 0—the box approaches a delta function !

Bǫ(s) = lim
ǫ→0

1− e−sǫ

sǫ

= lim
1− (1 − sǫ+ 1

2s
2ǫ2 − · · · )

sǫ
= 1.

19 The transform1/s of the unit step functionH(t) comes from the limit of the transforms
of short steep ramp functionsrǫ(t). These ramps have slope1/ǫ :

rǫ = t/ǫ
rǫ = 1

0 ǫ
t

ComputeRǫ(s) =

ǫ∫

0

t

ǫ
e−stdt+

∞∫

ǫ

e−stdt. Let ǫ → 0.

Solution Rǫ(s) =

ǫ∫

0

t

ǫ
e−st dt+

∞∫

ǫ

e−st dt =

[
e−st(−st− 1)

ǫs2

]t=ǫ

t=0

+

[
e−st

−s

]t=∞

t=ǫ

=
e−sǫ(−sǫ− 1) + 1

ǫs2
+

e−sǫ

s
=

1 − e−sǫ

ǫs2

limRǫ(s) = lim
1− (1− sǫ+ 1

2s
2ǫ2 − · · · )

ǫs2
=

1

s
.
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20 In Problems 18 and 19, show that the derivative of the ramp function rǫ(t)
is the box functionb(t). The “generalized derivative” of a step is the function.

Solution The generalized derivative of the short ramprǫ(t) is the thin boxb(t)/ǫ. We
say “generalized” because this is not a true derivative att = 0 : the ramp has zero slope
left of t = 0 and nonzero slope right oft = 0. But the transforms ofrǫ andbǫ follow
the rule for derivatives.

The generalized derivative of a step function is adelta function.
21 What is the Laplace transform ofy ′′′(t) when you are givenY (s) and

y(0), y ′(0), y ′′(0)?

Solution The Laplace Transform ofy ′′′(t) is s3Y (s)− s2y(0)− sy ′(0)− y ′′(0)

22 The Pontryagin maximum principlesays that the optimal control is “bang-bang”—
it only takes on the extreme values permitted by the constraints. To go from rest at
x = 0 to rest atx = 1 in minimum time, use maximum accelerationA and
deceleration−B. At what timet do you change from the accelerator to the brake ?
(This is the fastest driving between two red lights.)

Solution The maximum principle requires full accelerationA to an unknown timet0
and then full deceleration−B to reachx = 1 with zero velocity. The velocities are

v = At for t ≤ t0

v = At0 −B(t− t0) for t > t0

Integrating the velocityv = dx/dt gives the distancex(t) :

x = 1
2At

2 for t < t0

x = 1
2At

2
0 at t = t0

x = 1
2At

2
0 +At0(t− t0)− 1

2B(t− t0)
2 for t > t0

At the final timeT we reachx = 1 with velocity v = 0. This gives two equations for
t0 andT :

v = At0 −B(T − t0) = 0

x = At0T − 1
2At

2
0 − 1

2B(T − t0)
2 = 1

SubstituteT = 1
B t0(A + B) from the first equation into the second equation. This

leaves an ordinary quadratic equation to solve fort0.

Problem Set 8.6, page 453

1 Find the convolutionv ∗w and also the cyclic convolutionv ⊛w :

(a)v = (1, 2) andw = (2, 1)

Solution(a)
Convolution :(1, 2) ∗ (2, 1)

[
1 0
2 1
0 2

][
2
1

]
=

[
2
5
2

]

Cyclic Convolution :

[
1 2
2 1

] [
2
1

]
=

[
4
5

]
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(b) v = (1, 2, 3) andw = (4, 5, 6).

Solution(b)

(1, 2, 3) ∗ (4, 5, 6)




1 3 0
2 1 0
3 2 1
0 3 2
0 0 3




[
4
5
6

]
=




4
13
28
27
18




Cyclic Convolution :

[
1 3 2
2 1 3
3 2 1

][
4
5
6

]
=

[
31
31
28

]

2 Compute the convolution(1, 3, 1) ∗ (2, 2, 3) = (a, b, c, d, e). To check your answer,
adda+ b+ c+ d+ e. That total should be35 since1+ 3+1 = 5 and 2+ 2+3 = 7
and 5× 7 = 35.

Solution



1 0 0
3 1 0
1 3 1
0 1 3
0 0 1




[
2
2
3

]
=




2
8
11
11
3




1 + 3 + 1 times2 + 2 + 3 is 2 + 8 + 11 + 11 + 3 : (5)(7) = (35).
3 Multiply 1 + 3x + x2 times2 + 2x + 3x2 to find a + bx + cx2 + dx3 + ex4. Your

multiplication was the same as the convolution(1, 3, 1) ∗ (2, 2, 3) in Problem 8. When
x = 1, your multiplication shows why1+ 3+1 = 5 times2+ 2+3 = 7 agrees with
a+ b+ c+ d+ e = 35.

Solution

(1 + 3x+ x2)× (2 + 2x+ 3x2) = 2 + 2x+ 3x2 + 6x+ 6x2 + 9x3 + 2x2 + 2x3 + 3x4

= 2 + 8x+ 11x2 + 11x3 + 3x4

At x = 1 this is again(5)× (7) = (35).
4 (Deconvolution) Which vectorv would you convolve withw = (1, 2, 3) to get

v ∗w = (0, 1, 2, 3, 0)? Whichv givesv ⊛w = (3, 1, 2)?

Solution



v0 0 0
v1 v0 0
v2 v1 v0
0 v2 v1
0 0 v2




[
1
2
3

]
=




0
1
2
3
0




The first and last equation givev0 = v2 = 0. Substituting into the second, third, fourth
equation givesv1 = 1. Thereforev = (0, 1, 0).

For cyclic convolution

[
1 3 2
2 1 3
3 2 1

][
v0
v1
v2

]
=

[
v0 v2 v1
v1 v0 v2
v2 v1 v0

] [
1
2
3

]
=

[
3
1
2

]

gives

[
v0
v1
v2

]
=

[
0
1
0

]
.
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5 (a) For the periodic functionsf(x) = 4 andg(x) = 2 cosx, show thatf ∗ g is zero (the
zero function) !

Solution(a) From equation (4) we have

(f ∗ g)(x) =
2π∫

0

g(y)f(x− y) dy = 4

2π∫

0

2 cos y dy = 4 · 0 = 0 for all x.

(b) In frequency space (k-space) you are multiplying the Fourier coefficients of
4 and 2 cosx. Those coefficients arec0 = 4 and d1 = d−1 = 1.
Therefore every productckdk is .

Solution(b) In frequency space (k-space) you are multiplying the Fourier coefficients
of 4 and2 cosx. Those coefficients arec0 = 4 andd1 = d−1 = 1. Therefore every
product ckdk is zero. These are the coefficients of the zero function.

6 For periodic functionsf =
∑

cke
ikx andg =

∑
dke

ikx, the Fourier coefficients of
f ∗g are2πckdk. Test this factor2π whenf(x) = 1 andg(x) = 1 by computingf ∗g
from its definition (6.4).

Solution From equation (4) :

(f ∗ g)(x) =
2π∫

0

f(y)g(x− y) dy =

2π∫

0

1 · 1 dy = 2π.

The same convolution ink-space hasc0 = 1 andd0 = 1 (all otherck = dk = 0). Then
2πckdk gives the correct coefficients (2π and0) of the convolutionf ∗ g (which equals
2π).

7 Show by integration that the periodic convolution
2π∫
0

cosx cos(t−x)dx isπ cos t. In k-

space you are squaring Fourier coefficientsc1 = c−1 = 1
2 to get 1

4 and 1
4 ;

these are the coefficients of1
2 cos t. The2π in Problem 8 makesπ cos t correct.

Solution
2π∫

0

cosx cos(t− x) dx =

2π∫

0

cosx(cos t cosx+ sin t sinx) dx = π cos t+ 0.

8 Explain whyf ∗ g is the same asg ∗ f (periodic or infinite convolution).

Solution In Fourier space convolutionf ∗ g or f ⊛ g leads to multiplicationckdk,
which is certainly the same asdkck. Sof ⊛ g = g ⊛ f in x-space.

9 What 3 by 3 circulant matrix C produces cyclic convolution with the vector
c = (1, 2, 3)? ThenCd equalsc ⊛ d for every vectord. Computec ⊛ d for
d = (0, 1, 0).

Solution The circulant matrixC =

[
1 3 2
2 1 3
3 2 1

]
gives cyclic convolution with(1, 2, 3).

Whend = (0, 1, 0) we havec⊛ d = Cd =

[
1 3 2
2 1 3
3 2 1

][
0
1
0

]
=

[
3
1
2

]
.
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10 What 2 by 2 circulant matrixC produces cyclic convolution withc = (1, 1)?
Show in four ways that thisC is not invertible. Deconvolution is impossible.

(1) Find the determinant ofC. (2) Find the eigenvalues ofC.

(3) Findd so thatCd = c⊛ d is zero. (4)Fc has a zero component.

Solution The2 by 2 circulant matrixC =

[
1 1
1 1

]
gives(1, 1)⊛ d = Cd.

(1) The determinant of this matrix is zero.

(2) The eigenvalues ofC come fromdet

[
1− λ 1
1 1− λ

]
= (1 − λ)2 − 1 = 0.

Then(1 − λ)2 = 1 andλ = 0, 2. That zero eigenvalue means that the matrixC is
singular.

(3) Cd =

[
1 1
1 1

] [
−1
1

]
=

[
0
0

]
soC is not invertible :

[
−1
1

]
in nullspace.

(4) The Fourier matrixF givesFc =

[
1 1
1 −1

] [
1
1

]
=

[
2
0

]
. This again shows

λ = 2 and0.

11 (a) Changeb(x) ∗ δ(x− 1) to a multiplication̂b(k) d̂(k) :

The boxb(x) = {1 for 0 ≤ x ≤ 1} transforms tob̂(k) =
1∫
0

e−ikxdx.

The shifted delta transforms tôd(k) =
∫
δ(x − 1)e−ikxdx.

(b) Show that your result̂b d̂ is the transform of a shifted box function. This shows how

convolution withδ(x− 1) shifts the box.

Solution This question shows that continuous convolution withδ(x − 1) produces a
shift in the box functionb(x), just like discrete convolution with the shifted delta vector
(. . ., 0, 0, 1, . . .) produces a one-step shift.

We computeδ(x− 1) ∗ b(x) in x-space to findb(x− 1), or in k-space to see the effect
on the coefficients :

b̂(k) =

1∫

0

e−ikxdx =

[
e−ikx

−ik

]x=1

x=0

=
1− e−ik

ik

Shifted box e−ik

(
1− e−ik

ik

)
agrees with

2∫

1

e−ikxdx =

[
e−ikx

−ik

]x=2

x=1

.

12 Take the Laplace transform of these equations to find the transfer functionG(s) :

(a)Ay ′′ +By ′ + Cy = δ(t) (b) y ′ − 5y = δ(t) (c) 2y(t)− y(t− 1) = δ(t)

Solution(a) As2Y (s)+BsY (s)+CY (s) = 1 gives the transfer function
1

As2 +Bs+ C

Solution(b) sY (s)− 5Y (s) = 1 gives the transfer functionY (s) =
1

s− 5
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Solution(c) 2Y (s)− Y (s)e−s = 1 gives the transfer functionY (s) =
1

2− e−s

13 Take the Laplace transform ofy′′′′ = δ(t) to find Y (s). From the Transform Table
in Section 8.5 findy(t). You will seey′′′ = 1 and y′′′′ = 0. But y(t) = 0 for
negativet, so youry′′′ is actually a unit step function and youry′′′′ is actuallyδ(t).

Solution y ′′′′ = δ transforms tos4Y (s)− s3y(0)− s2y ′(0)− sy ′′(0)− y ′′′(0) = 1

Assume zero initial values to gets4Y (s) = 1 andY (s) =
1

s4
andy3 =

t3

6
.

This is also the solution toy ′′′′ = 0 with initial valuesy, y ′, y ′′, y ′′′ = 0, 0, 0, 1.
14 Solve these equations by Laplace transform to findY (s). Invert that transform

with the Table in Section 8.5 to recognizey(t).

(a)y ′ − 6y = e−t, y(0) = 2 (b) y ′′ + 9y = 1, y(0) = y ′(0) = 0.

Solution(a) The transform ofy ′ − 6y = e−t with y(0) = 2 is

sY (s)− 2− 6Y (s) =
1

s+ 1

Y (s) =
2

s− 6
+

1

(s+ 1)(s− 6)

=
2

s− 6
+

1

7(s− 6)
− 1

7(s+ 1)

=
15

7(s− 6)
− 1

7(s+ 1)

The inverse transform isy(t) =
15

7
e6t − 1

7
e−t

Solution(b) The transform ofy ′′ + 9y = 1 with y(0) = y ′(0) = 0 is

s2Y (s) + 9Y (s) =
1

s

Y (s) =
1

s(s2 + 9)

=
1

9s
− 1

18(−3i+ s)
− 1

18(3i+ s)

The inverse transform isy(t) =
1

9
− 1

18
e3it − 1

18
e−3it = yp + yn.

15 Find the Laplace transform of the shifted stepH(t− 3) that jumps from0 to 1 at t = 3.
Solvey ′ − ay = H(t − 3) with y(0) = 0 by finding the Laplace transformY (s) and
then its inverse transformy(t) : one part fort < 3, second part fort ≥ 3.

Solution The transform ofH(t− 3) multipliese−3s by the transform1
s of H(t).

y ′ − ay = H(t− 3) y(0) = 0

sY (s)− aY (s) =
e−3s

s

Y (s) =
e−3s

s(s− 3)
=

e−3x

3

(
1

s− 3
− 1

s

)
.

The inverse transformy(t) is the shift of13
(
e−3t − 1

)
: zero untilt = 3.
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16 Solvey ′ = 1 with y(0) = 4—a trivial question. Then solve this problem the slow way
by findingY (s) and inverting that transform.

Solution The trivial solution is :y = t+ 4. The transform method gives

sY (s)− 4 =
1

s

Y (s) =
1

s2
+

4

s

y(t) = t+ 4

17 The solutiony(t) is the convolution of the inputf(t) with what functiong(t)?

(a)y ′ − ay = f(t) with y(0) = 3

Solution(a) y ′ − ay = f(t) with y(0) = 3

sY (s)− 3− aY (s) = F (s)

Y (s) =
3 + F (s)

s− a

y(t) = 3e−t + f(t) ∗ e−at

(b) y ′ − (integral ofy) = f(t).

Solution(b) The transform ofy ′− (integral ofy) = f(t) is sY (s) − Y (s)

s
= F (s),

if y(0) = 0.

The inverse transform of
1

s− 1
s

=
s

s2 − 1
is cos(it).

ThenY (s) =
F (s)

s− 1
s

is the transform of the convolutionf(t) ∗ cos(it).

18 Fory ′ − ay = f(t) with y(0) = 3, we could replace that initial value by adding3δ(t)
to the forcing functionf(t). Explain that sentence.

Solution For a first order equation, an initial conditiony(0) is equivalent to adding
y(0)δ(t) to the equation and starting that new equation at zero.

19 What isδ(t) ∗ δ(t) ? What isδ(t− 1) ∗ δ(t− 2)? What isδ(t− 1) timesδ(t− 2)?

Solution δ(t) ∗ δ(t) = δ(t)

δ(t− 1) ∗ δ(t− 2) = δ(t− 3)

δ(t− 1) timesδ(t− 2) equals the zero function.

20 By Laplace transform, solvey ′ = y with y(0) = 1 to find a very familiary(t).

Solution y ′ = y y(0) = 1

sY (s)− 1 = Y (s)

Y (s) =
1

s− 1
gives y(t) = et.
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21 By Fourier transform as in (9), solve−y ′′ + y = box functionb(x) on0 ≤ x ≤ 1.

Solution The Fourier transform of−y ′′ + y = b(x) is

(k2 + 1) ŷ (k) = b̂(k) =

1∫

0

e−ikxdx =
1− e−ik

ik
.

ŷ(k) =
1− e−ik

(k2 + 1)(ik)

This transform must be inverted to find y(x). In reality I would solve separately on
x ≤ 0 and0 ≤ x ≤ 1 andx ≥ 1. Then matching at the breakpointsx = 0 andx = 1
determines the free constants in the separate solutions.

22 There is a big difference in the solutions toy ′′ + By ′ + Cy = f(x), between the
casesB2 < 4C andB2 > 4C. Solvey ′′ + y = δ andy ′′ − y = δ with y(±∞) = 0.

Solution(a) The delta function produces a unit jump iny ′ atx = 0 :

y ′′ + y = 0 hasy = c1 cosx + c2 sinx for x < 0, y = C1 sinx for x > 0.

The jump iny ′ givesC2 − c2 = 1. The condition ony(± ∞) does not apply to this
first equation.

y ′′ − y = 0 hasy = cex for x < 0 andy = Ce−x for x > 0; theny(± ∞) = 0.

Matchingy atx = 0 givesc = C.

Jump iny ′ atx = 0 gives−C − c = 1 soc = C = − 1
2

Solutiony(x) = − 1
2e

x for x ≤ 0 andy(x) = − 1
2e

−x for x ≥ 0

23 (Review) Why do the constantf(t) = 1 and the unit stepH(t) have the same
Laplace transform1/s? Answer : Because the transform does not notice .

Solution The Laplace Transformdoes not notice any values off(t) for t < 0.


