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162 Chapter 6. Eigenvalues and Eigenvectors

Problem Set 6.1, page 333

1 A has eigenvaluesandy, A% has eigenvaluesand(3)? = 1, A> has eigenvalues
and0 (notice($)> = 0).

(a) Exchange the rows of to getB:
B= [2 g} has eigenvaluesand— 1.

B is still a Markov matrix, so\ = 1 is still an eigenvalue. The sum down the main
diagonal (the “trace”) is now5 so the second eigenvalue must be5. Then
trace=.2+.3=1-.5.

Zero eigenvalues remain zero after elimination becauseattigx remains singular and
its determinant remains zero.

2 Ahas\; = —1 and)\, = 5 with eigenvectors; = (—2,1) andze = (1,1). The
matrix A + I has the same eigenvectors, with eigenvalues increasédd@ and6.
That zero eigenvalue correctly indicates tHat [ is singular.

3 Ahas); = 2and), = —1 (check trace and determinant) with = (1,1) and
x> = (2,—1). A1 has the same eigenvectors, with eigenvalyes= 3 and—

4 Ahash; = —3 and)y = 2 (check trace= —1 and determinant —6) with z; =
(3,—2) andx, = (1,1). A% has thesame eigenvectoas A4, with eigenvalues? = 9
and\3 = 4.

5 A andB have eigenvaluesand3. A + B has\; = 3, A» = 5. Eigenvalues oA + B
are not equato eigenvalues ofl plus eigenvalues aB.

6 AandB have)\; = 1and)\, = 1. AB andBA have\ = 2 + /3. Eigenvalues oAB
are not equato eigenvalues ofl times eigenvalues aB. Eigenvalues oA B and BA
are equal (this is proved in section 6.6, Problems 18-19).

7 U is triangular so its eigenvalues are the diagonal entrigsuss, . . ., un,. (This is
because del/ — AI) will be just the productui; — A)(u22 — A) ... (up, — A) from
the main diagonal.)

11 0 0

8 (a) Multiply Az to seehx which reveals\ (b) Solve(A — \I)x = 0tofind.

9 (a) Multlply byA A(Am) = A(A\x) = MMz givesAQ:c = A2z (b) Multiply by
A7l = A7 TAx = A\ = MA 'z givesA 'z = %:I: (c) Add Iz = x:
(A+ Dz =X+ 1)x.

10 A has); = 1 and)\y = 4 with ; = (1,2) andxs = (1,—1). A* hasA; = 1 and

A2 = 0 (same eigenvectorsii'®® has)\; = 1 and)\; = (.4)1°° which is near zero. So
A0 is very neard>: same eigenvectors and close eigenvalues.

A= {1 1] with A = 2 and0 U= {1 1} has\ = 1 ando.

11 With A\ = 0,1,2 the rank is2. The eigenvalues aB? are0, 1, 4. The eigenvalues of
(B*+I)tare(0+1)t=1,1+1)"t=354+1) =1
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The projection matrix hasA = 1, 0, 1 with eigenvector$l, 2, 0), (2,—1,0), (0,0, 1).
Add the first and last vectorsi, 2, 1) also has\ = 1. Note P? = P leads to\? = )
soA=0orl.

(@) Pu = (UUT)’LL = ’u,(uTu) =

soA=1 (b) Pv = (uul)v = u(uTv)
O(C) Tr = (—1,1,0,0 , Lo = (—3,0 1,
0.

), 3 = (—5,0,0,1) all havePz = Oz

Two eigenvectors of this rotation matrix azg = (1,7) andxzes = (1,—i) (more
generallycz, anddx, with cd # 0).

These matrices all havg, = 0 and )\, = 0 (which we can see from trace 0 and
determinant 0):

_ 0 0 _ 0 1 2 _|la —a 2
A_{O O] A= {0 0} hasA® =0 A_[a _a} hasA® = 0.

A =0,0,6 (notice rankl and trace6) with 1 = (0,-2,1), 2 = (1,-2,0), &3 =
(1,2,1).

= Ot

ﬂ [ﬂ = [6} So\; = 6. Then); = 1to make trace= 5+ 2 = 6 + 1.

[ :

[ 3:| {ﬂ = [ZIS] = (a+b) [ﬂ S0 {ﬂ is an eigenvector.

The other eigenvalue is— b to make trace=a +d = (a + b) + (d — b).

Qe

. .14 0 3 2 2 2
These3 matrices have. = 4 and5, trace9, det 20: {O 5] , [_1 6] ; [_3 7}.

(a) w is a basis for the nullspace,andw give a basis for the column space
(b) = = (0, é, 1) is a particular solution. Add amy from the nullspace
(c) fAx =u I5ﬁad a solutionu, would be in the column space: wrong dimension 3.

(@ A= { 22 1;} has tracd 1 and determinarit8, soA = 4 and7.

(b) A= [_/\?)\2 A —1F )\2] has trace\; + A\, and determinant; \; so its eigenval-

ues must bé\; and),. This is a typicatompanion matrix.

(A — \I) has the same determinant@s— A\I)T [1 0 and 1 1| havedifferent
because every square matrix hés M = det MT. |1 0 eigenvectors

X = 1 (for Markov), 0 (for singular)~ 2 (so sum of eigenvalues trace= %).

If you known independent eigenvectors and their eigenvalues, you kinewtrixA.
In Section 6.2, the:’s and\’s go intoV andA, and the matrix must bd = VAV L,
In this section, Problem 23 suggests that = Bwv for every vector (which proves
A = B) because

v=cix1+- --+cpxTy, Av:cl)\lml+"'+ann$n:B’U.

The block matrix has = 1, 2 from B and5, 7 from D. All entries ofC are multiplied
by zeros indet(A — M), soC has no effect on the eigenvalues.
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25 A has rank 1 with eigenvalu€s0, 0, 4 (the 4 comes from the trace df). C has rank
2 (ensuring two zero eigenvalues) afid1, 1, 1) is an eigenvector with = 2. With
trace 4, the other eigenvalue is alse-= 2, and its eigenvector i€l, —1,1, —1).

26 B has\ = —-1,-1,—-1,3andC has\ = 1,1, 1, —3. Both havedet = —3.

27 Triangular matrix: A\(A) = 1,4,6; A(B) = 2, V3, —/3; Rank-1 matrix:\(C) =
0,0,6.

0-Xx 1 0 . .
28 det| O 0—A 1 =X +1=0for\=1,e2"/3 ¢=2mi/3,
1 0 0-A

Those complex eigenvalugs, A3 arecos 120° +isin 120° = 5 + z@
Thetrace ofP is A1 + As + A3 = 0.
00—\ 0 1
det l 0 1—A 0
1 0 0—A
1+ 1—1=1. Three eigenvectors afé, 1, 1) and(1,0, 1) and(1,0, —1). SinceP is
symmetric we could have chosen orthogonal eigenvectorsirgdithe first t@o, 1, 0).
29 Seth=0indet(A—X)= (A —A)...(\, = A) tofinddet A = (A1)(A2) - - (M\n).

30 A = S(a+d++/(a—d)?+4bc) andX; = L(a+d -V ) add toa + d.
If Ahas\; =3and\; =4thendetd — AI) = (A —3)(A —4) =\? — 7\ + 12.

1
2

=-XN4+X+A-1=0forx=1,1,—-1. The trace is

Problem Set 6.2, page 345

Questions 1-7 are about the eigenvalue and eigenvector metesA and V.

1 (a) Factor these two matrices into= VAV ! :
1 2 1 1
A:[O?)} and A=[3 3]
(b) If A=VAV~tthenA3 = (V)(A3) (V- andA~! = (V)(A-H) (V1

BRI A S

2 If Ahas)h; = 2 with eigenvectorz; = [§] and X, = 5 with , = [}],
useVAV~!to find A. No other matrix has the samés andz’s.

Put the eigenvectorsii , 4|1 1|2 o1 -1 (2 3
and eigenvalues in. A=VAS _[O 1} {O 5] [O 1}_[0 5]'

3 Supposed = VAV~ What is the eigenvalue matrix fot + 27 ? What is the
eigenvector matrix ? Check that+ 27 = (V))(A + 21)(V) L.

If A= VAV~!then the eigenvalue matrix fot + 27 is A + 21 and the eigenvector
matrix is still V. VIA+2)V L =VAVL+V(ERI)V = A+ 2].

4 True or false: If the columns df (eigenvectors ofd) are linearly independent, then

~—

ENENE
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(a) Aisinvertible (b) Ais diagonalizable
(c) Visinvertible (d) Visdiagonalizable.
(a) False: don'tknow's (b) True (c) True (d) False: need eigenvector¥of

5 If the eigenvectors ofl are the columns of, thenA is a matrix. If the eigen-
vector matrixV is triangular, ther” —! is triangular. Prove thad is also triangular.

WithV = I,A = VAV~! = A is a diagonal matrix. It/ is triangular, therd/ ! is
triangular, so/ AV ! is also triangular.
6 Describe all matrice¥ that diagonalize this matrix (find all eigenvectors):

1)

Then describe all matrices that diagonalize'.

The columns of/ are nonzero multiples d®,1) and(0,1): in either order. The same
matricesV” will diagonizeA~*

7 Write down the most general matrix that has eigenvedtdisand[_}].

. -1 |1 1 A1 1 1 . A+ A A — .
A= VAV = [1 -1 w1 o2 nIn N 2=
a

b for anya andb.

Questions 8-10 are about Fibonacci and Gibonacci numbers.

8 Diagonalize the Fibonacci matrix by completing :

11 . A A A1 0

1 0| |1 1 0 A )
Do the multiplicationV’ A*V [ 3] to find its second component. This is thth Fi-
bonacci numbef, = (A} — A5) /(A1 — A2).

1 1 1 1 —
R e [ R
1 Ao [AF0 1 —Xo| [1] _ [ 2nd componernis F}
v G I M]H—M-A@/w-w]-
9 Suppose€7.o is theaverageof the two previous numbeis;; andGy, :

G2 = %Gk+l + %Gk is Gry2 _ A Grt1
Gry1 = Gr Gyt Gr |-

(a) FindA and its eigenvalues and eigenvectors.
(b) Find the limit as» — oo of the matricesA™ = VA"V 1L
(c) If Gp = 0 andG, = 1 show that the Gibonacci numbers approé,ch
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(@) A= H (5)] hash; = 1, Ay = — % with @ = (1,1), @5 = (1,~2)

n 2 1 2 1
o[ [ ][ 4] ]

10 Prove that every third Fibonacci numbeiOini, 1,2, 3, ... is even.
The ruleFy. > = Fr+1 + F). produces the pattern: even, odd, odd, even, odd,.odd,

Questions 11-14 are about diagonalizability.

11 True or false: If the eigenvalues dfare2, 2, 5 then the matrix is certainly
(a) invertible (b) diagonalizable (c) notdiagonalizable.
(a) True(no zero eigenvalues) (balse(repeated\ = 2 may have only one line of

eigenvectors) (c)alse(repeated\ may have a full set of eigenvectors)
12 True or false : If the only eigenvectors dfare multiples of 1, 4) then A has

(@) noinverse (b) arepeated eigenvalue (c) no diagon@iZBtAV 1.

(a) False: don't know\ (b) True: an eigenvector is missing (c) True.

13 Complete these matrices so thiat A = 25. Then check thah = 5 is repeated—
the trace isl0 so the determinant afi — A7 is (A — 5)2. Find an eigenvector with
Ax = 5x. These matrices will not be diagonalizable because there $2cond line of
eigenvectors.

A_[s 9

=

2

} and A_{ i

EXEER

A= { 8 3] (or other), A = {_

9 4 10 5], only eigenvectors
-3 2 A=

4 1 |5 0| arex = (c,—c).

14 The matrixA = [3 1] is not diagonalizable because the rank4df- 31 is
Change one entry to makédiagonalizable. Which entries could you change ?

The rank ofA — 37 is r = 1. Changing any entry except, = 1 makesA
diagonalizable 4 will have unequal eigenvalues, so eigenvectors are inakren)

Questions 15-19 are about powers of matrices.

15 A* = VAFV ! approaches the zero matrix As— oo if and only if every\ has
absolute value less than . Which of these matrices ha&® — 0?2

6 9 6 .9
Al:[.zl .1] and A2:[.1 .6]

Ak = VA*V~1 approaches zeiiband only if every |A| < 1; AY — A5, A5 — 0.
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16 (Recommended) Find andV to diagonalized; in Problem 15. What is the limit
of A¥ ask — oo ? What is the limit ofV A*V =1 2 In the columns of this limiting
matrix you see the .

1 (1 0] 3 3| steady
A= andV = (AP — andVAFV =1 — |2 2 .
1 —1 0 0 i1 state
17 Find A andV to diagonalized, in Problem 15. What i$A5)'%u, for theseu, ?
uo_[i} and ug = _i’ and uo_[g].
_ 19 0 _[3 =3]. 410[3] _ 10 |3 ] 3] _ 0] 3
A= .3]'5—{1 1}/12 {1 =T AT | g [ =7 )

A0 {8} =(.9)10 [i’] + (.3)10 {_ﬂ be(_:ause{g} is the sum of{ﬂ + [_ﬂ

18 DiagonalizeA and computd’A*V ~! to prove this formula ford* :

2 - g L[ 1438 1-3F
A_{_l 2} has A_E{l—?,k 143k |-

2 N b L R O S o B o I B O
-1 2| — 2|1 1|]0 3||-1 1 2|1 1]|0 3k
11 ; : 11438 1-3*
[_1 1}. Multiply those last three matrices to gét = 3 L 3k 143k
19 DiagonalizeB and computd’A*V ~! to prove this formula fo3* :

501 k| BF Bk —4F
B_{OZJ has B_{O n .

m_[1 1 5 01°[1 1] _[s" 5F—ak
0 —-1{|0 4 0 -1 0 4k
20 Supposed = VAV L. Take determinants to proviet A = det A = A\ Aa--- \,.
This quick proof only works wher can be .

det A = (det V)(det A)(det V—1) = det A = Ay - - - \,. This proof works whem is
diagonalizable

21 Show that trac& T = traceT'V, by adding the diagonal entries Gl andT'V :

_|la b g r
V_[C d} and T_{S t}

Choos€l’ asAV L. ThenV AV ! has the same trace A% ~'V = A. The trace ofd
equals the trace of, which is certainly the sum of the eigenvalues.

traceVT = (aq + bs) + (cr + dt) is equal to(ga + rc) + (sb + td) = traceT'V.
Diagonalizable trace df AV ~! = trace of(AV 1)V = trace ofA: sum of the\’s.
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26

27

AB — BA = I is impossible since the left side has trace . But find an
elimination matrix so thatl = F andB = E™ give
AB — BA = { _(1) (1) } which has trace zero.

AB — BA = I is impossible since tracelB — trace BA = zero # tracel.
AB — BA = C'is possible when tracg”) = 0.

{1 0 T T~ _ |—1 0
E_{l 1]hasEE —F E_{ 0 1].

If A= VAV~ diagonalize the block matri® = [4 ,2]. Find its eigenvalue and
eigenvector (block) matrices.

—1
IfA=VAV—1thenB=[A 0}:[5 OHA OHV 0}.503

0 24 Vi|0 2A 0o vt
has the additional eigenvalugs,, . .., 2\,.
Consider all 4 by 4 matriced that are diagonalized by the same fixed eigenvector

matrix V. Show that thed’s form a subspacécA and A; + A, have this samé&”).
What is this subspace whén= I ? What is its dimension ?

The A’s form a subspace sineed and A; + A, all have the sam&. WhenV =T
the A’s with those eigenvectors give the subspace of diagonaieceat Dimension 4.

Supposed? = A. On the left sided multiplies each column oft. Which of our four
subspaces contains eigenvectors witk= 1? Which subspace contains eigenvectors
with A = 0? From the dimensions of those subspacebas a full set of independent
eigenvectors. So every matrix with? = A can be diagonalized.

If Ahascolumng,...,x, then column by columnd? = A means everyle; = x;.

All vectors in the column space (combinations of those calsim);) are eigenvectors
with A = 1. Always the nullspace has = 0 (A might have dependent columns, so
there could be less thaneigenvectors withh = 1). Dimensions of those spaces add
to n by the Fundamental Theorem, dds diagonalizablén independent eigenvectors
altogether).

(Recommended) Supposge: = Ax. If A = 0 thenz is in the nullspace. A # 0 then

@ is in the column space. Those spaces have dimens$ioasr) + r = n. So why
doesn’t every square matrix handinearly independent eigenvectors ?

Two problems: The nullspace and column space can overlagp,cmld be in both.
There may not be independent eigenvectors in the column space.
The eigenvalues oft are 1 and 9, and the eigenvaluegbare—1 and 9:

5 4 4 5
A:{45] and 32{54].

Find a matrix square root od from R = VAV ~!. Why is there no real matrix
square root oB ?

R=VV/AV-1= {2 1} hasR2= A. v B needs\ = v/9 and/—1, trace is not real.

1 2
10

0 —1

Note that[ 1 0

] can have/—1 = i and—i, trace0, real square roo%_O 1}.
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28 The powersA* approach zero if all\;|] < 1 and they blow up if any\;| > 1.
Peter Lax gives these striking examples in his bbislear Algebra

3 2 3 2 5 7 5 6.9
=[P i) =3 3 e-[3 ] e-[3)
|A1024|| > 10700 pl024 — | Cc1024 — _ o | D1924|| < 1078

Find the eigenvalues = ¢ of B andC to showB* = [ andC?® = —1.

B has)\ = i and—i, soB* has\* = 1 and 1 andB* = I. C has\ = (1 ++/3i)/2.
This isexp(+mi/3) soA* = —1 and—1. ThenC?® = —T andC1%%* = —(C.

29 If A and B have the same'’s with the same full set of independent eigenvectors,
their factorizations into are the same. Sd = B.

The factorizations ofd and B into VAV ! are the same. Sd = B. (This is
the same as Problem 6.1.25, expressed in matrix form.)

30 Suppose the sanié diagonalizes botd and B. They have the same eigenvectors in
A=VAV-landB = VA,V L. Prove thatdB = BA.
A =VAV~1andB = VA,V L. Diagonal matrices always give; Ay = AsA;.
ThenAB = BAfrom VAV IVAV ™ = VA{AQV ™t = VAgA VL Thisis
VAQV_lVAlV_l = BA.

31 (a) If A = [3}] then the determinant ol — Al is (A — a)(\ — d). Check the
“Cayley-Hamilton Theorem” thatA — al)(A — dI) = zero matrix

(b) Test the Cayley-Hamilton Theorem on Fibonaccl's= [} (1,} The theorem
predicts thatd? — A — I = 0, since the polynomialet(A4 — \I) is A2 — X — 1.

(@) A= [g Z] hasA = acand\ = d: (A—al)(A—dI) = [8 dﬁa} {aad 8]

= {8 8] (b) A = E (1)] hasA? = [% ﬂ andA?2 — A — 1 = 0 is true,
matching\? — A — 1 = 0 as the Cayley-Hamilton Theorem predicts.

32 Substituted = VAV ~tintothe productA—\1)(A—X21) - - - (A—\,I) and explain
why this produces the zero matrix. We are substituting thixirma for the number\
in the polynomiap(\) = det(A — AI). TheCayley-Hamilton Theorem says that this
product is alway®(A) = zero matrix even if A is not diagonalizable.

WhenA = VAV ~lisdiagonalizable, the matrit—\,; I = V(A—X; 1)V~ will have
0in thej, j diagonal entry ofA — A, I. In the producp(A) = (A= 1) --- (A=, 1),
eachinsidé’ —! canceld/. This leaved’ times product of diagonal matrices — X, I)
timesV 1. That product is the zero matrix because the factors produego in each
diagonal position. Thep(A) = zero matrix, which is the Cayley-Hamilton Theorem.
(If A is not diagonalizable, one proof is to take a sequence obdiagable matrices
approachingd.)

Comment | have also seen the following reasoning but | am not condnce
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Apply the formulaAC™T = (det A)I from Section 5.3 tod — \I with variable). Its
cofactor matrixC' will be a polynomial in), since cofactors are determinants:

(A=) cof (A= A)T = det(A — XI)T = p(\)I.

“For fixed A, this is an identity between two matrix polynomials.” Set= A to find
the zero matrix on the left, s9(A) = zero matrix on the right—which is the Cayley-
Hamilton Theorem.

| am not certain about the key step of substituting a matrixX¥o If other matrices
B are substituted, does the identity remain true?AB # BA, even the order of
multiplication seems unclear.

Challenge Problems

33 Thenth power of rotation through is rotation through6 :

An — cosf —sinf |" | cosnfd —sinnd
| sin6 cos 6 | sinnd cosnb |-

Prove that neat formula by diagonalizidg= VAV ~!. The eigenvectors (columns of
V) are(1,4) and(4, 1). You need to know Euler’s formulet® = cos 6 + i sin 6.

cosf) —sinf
sin 6 cos

det = 1). Their eigenvectors ard, —i) and(1,):

ind s
A =VA V! = [_1. 1-] [e e_me] [i }] /2i

The eigenvalues ol = are\ = e ande~* (trace2cos# and

(3 (3

B (ein9 + e—inO)/2 «e+| _|cosmf —sinnf
= (einO _ e—int‘))/gi ~ | sinnf cosnb |-
Geometricallyp rotations byd give one rotation by.6.

34 Thetranspose ol = VAV 1lis AT = (V=1)TAVT. The eigenvectorsid®y = \y
are the columns of that matri¥’ —!)T. They are often calletkft eigenvectors.

How do you multiply three matriceg AV ~! to find this formula forA ?

Sum of rank-1 matrices A= VAV ! =\ziyl + -+ Nz yl.

Columns ofV/ times rows ofAV ~! will give r rank-1 matrices(r = rank of A).

35 Theinverse ofd = eygn)+onegn)is A~! = eygn)+C*onegn). Multiply AA~!
to find that numbe€ (depending om).

Note thatones(n) * ones(n) = n x ones(n). This leads ta® = 1/(n + 1).
AA~! = (eye(n) + ones(n)) * (eye(n) + C x ones(n))
=eye(n) + (1 + C + Cn) x ones(n) = eye(n).
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Problem Set 6.3, page 357

1 Find all solutionsy = cie*Mta; + cpe?txy to y' = { g é ] y. Which solution
starts fromy(0) = c1x1 + coxo = (2,2)?
The eigenvalues come frodet(A — A\I) = 0. Thisis

M-8\ +12=(A—-2)(A—6)=0s0\= 2,6

Eigenvectors(A—2I)x; = 0and(A—61)xs = 0givex; = (1,—1) andxzs = (1,3)

Solutions ar(y(t) = Clth |: _i :| +C2€76t |: :1)) :|

Constantg, co comefrom[ _} ;) ] { 2 } =y(0) = { g }Thencl =cy =1.
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2 Find two solutions of the forny = eMz toy’ = { g 12 ] Y.

The eigenvalues come froo¥ — 7\ — 8 = 0. Factor into(A — 8)(\ + 1) to see
A=28, and—1.

(A—8I)cc1_{_g _1(”::;1_0 givesacl_{ %]
4 10 . 5
(A+I)w2={ 9 5}:1:220 g|ves:1:2:{_2]

The two solutions arg(t) = e®x; ande !z,

3 If a #d, find the eigenvalues and eigenvectors and the completémoto y' = Ay.
This equation is stable whenandd are .

; | a b
Y=1o0 a|¥
The eigenvalues are = a and\ = d. The eigenvectors come from

(A_anml_{g dﬁa}ml—o ml—[é]

—d b b

Two solutions are = e**x, andy = e*x,. Stability fornegativea andd.
4 If a # —b, find the solutionse**x; and e*2'x, toy = Ay:

Az[a b] Why is ¢y’ = Ay not stable®

a b
Ais singularso\; = 0. Traceisa +bs0oXs =a+b. (A—0I)x, = 0gives
:131:[_2] (A-(a+b)])$2:|:_2 _2:|£L‘2=0givesw2:|:i:|.

The system is not stable because- 0 is an eigenvalue. lk: = a + b is negative, the
system is “neutral” and the solution approaches a steatly @anultiple ofz,).

5 Find the eigenvalues;, A2, A3 and the eigenvectors;, x», x3 of A. Write
y(0) = (0,1,0) as a combination; x; + cox2 + csxs = Ve and solvey’ = Ay.
What is the limit ofy(t) ast — oo (the steady state)Steady states come fraln= 0.

-1 1 0
1 -2 11.

0 1 -1

A:

Calculation giveslet(A — AI) = —(A + 1)A(X + 3) and eigenvalues = 0, —1, —3.



6.3. Linear Systemg’ = Ay 173

1 1 1
A=0 has eigenvector; = ll] A=—1 has:cg_l 0] A=-3 has z3= [—21
1 -1 1

Notice Those eigenvectors are orthogonal (becatise symmetric). Thery(0) is

1
(0,1,0) = %(-’Bl —x3) soy(t) = %eotml - %87315:32 approacheg(co) = % [ 1 ] _
1

6 The simples® by 2 matrix without two independent eigenvectors has 0,0:

’
Y1 o o 0 1 Y1 . . Y1 ot 1
[yz} _Ay_{0 0][%} hasaﬂrstsolutmn{m]_e {O}

Find a second solution to these equatigiis= y, andy>’ = 0. That second solution
starts witht times the first solution to givg; = ¢. What isy, ?

Note A complete discussion @f’ = Ay for all cases of repeatexs would involve
the Jordan formof A : too technical. Section 6.4 shows that a triangular fornuffi-s
cient, as Problems 6 and 8 confirm. We can solve/fcand theny; .

The first solution t(yll =12 andy; =0is (y1(t),y2(t)) = (1,0) = eigenvector.
A second solution ha@y;, y2) = (¢, 1). The factort appears when there is ng.
7 Find two\'s andz’s so thaty = e*x solves

dy [4 3
a |0 1|¥

What combinatiory = creMlzy + o2tz starts fromy(0) = (5,-2)?
1 1 5 1 1
o= 1], e [ 4] a0 = 3], e s ] 2 1]

8 Solve Problem 7 foy = (y, z) by back substitution; beforey :

d d
Solved—j = zfromz(0) = —2. Then solved—?i =4y + 3z fromy(0) = 5.
The solution fory will be a combination o&* andef. A\ = 4 and1. z(t) = —2¢'.

Thendy/dt = 4y — 6et with y(0) = 5 givesy(t) = 3e** + 2¢t as in Problem 7.
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9 (a) If every column ofd adds to zero, why i = 0 an eigenvalue ?

(b) With negative diagonal and positive off-diagonal addio zero,y’ = Ay
will be a “continuous” Markov equation. Find the eigenvawnd eigenvectors,
and thesteady statast — oo

dy _[-2 3 : 4 ,
Solve E_{ 9 _3}y with  y(0) = {1] What isy(c0) ?

(a) If every column ofd adds to zero, this means that the rows add to the zero row. So
the rows are dependent, adds singular, and\ = 0 is an eigenvalue.

9 _g are\; = 0 with eigenvectore; = (3,2) and
A2 = —5 (to give trace= —5) with 3 = (1, —1). Then the usual 3 steps:

1. Writey(0) = {ﬂ asB} + {_ﬂ =x1 + X2

(b) The eigenvalues ol = {_2

2. Follow those eigenvectors k) x; ande 5z,
3. The solutiony(t) = = + e~ %'z, has steady state; = (3,2).

10 A door is opened between rooms that ho[@) = 30 people andv(0) = 10 people.
The movement between rooms is proportional to the diffexene w:

dvi and dwi
dt_w v dt_v w

Show that the totab + w is constant40 people). Find the matrix idy /dt = Ay and
its eigenvalues and eigenvectors. Whataesdw att = 1 andt = co?

-1

A1=0 , |1 [ 1], w()=20+10e7?  w(co0) =20
o = —2 With@ = M T2 = {—1} w(1) =20 —10e=2  w(oo) = 20

11 Reverse the diffusion of people in Problem 1Qlkydt = —Az:

dlv+w)/dt = (w—v)+ (v—w) = 0, so the totab 4+ w is constantA = [_} 1]

has

dv and dw
v —w bt
dt dt
The totalv + w still remains constant. How are thés changed now that is changed
to — A? But show thav(¢) grows to infinity fromv(0) = 30.

=w — .

d v 1 -1
pm {w} = [_1 1] has\ = 0 and+2: v(t) = 20 + 10e?** — oo ast — oco.

12 A has real eigenvalues bithas complex eigenvalues:

A_[(ll Olb] B_[llj _é] (a andb are rea)

Find the stability conditions om and b so that all solutions ofly/dt = Ay
anddz/dt = Bz approach zero as— o.
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A= {a ﬂ has real eigenvaluest 1 anda — 1. These are both negativedf < —1,

and the solutions of’ = Ay approach zeroB = i) _[13 has complex eigenvalues

b+ i andb — i. These have negative real partd ik 0, and all solutions o’ = Bz
approach zero.

13 SupposeP is the projection matrix onto th&s° line y = = in R2. Its eigenvalues ark
and0 with eigenvectorgl, 1) and(1, —1). If dy/dt = — Py (notice minus sign) can
you find the limit ofy(¢) att = oo starting fromy(0) = (3,1)?

A projection matrix has eigenvalues= 1 and\ = 0. EigenvectorsPx = « fill
the subspace thd® projects onto: heree = (1,1). EigenvectorsPx = 0 fill the
perpendicular subspace: hate= (1, —1). For the solution tay’ = — Py,

y(0) = [ﬂ = B} + {_ﬂ yt)=e' B} + el {_ﬂ approaches{_}] .

14 The rabbit population shows fast growth (fran) but loss to wolves (from-2w).
The wolf population always grows in this model4? would control wolves):

dr dw
— =6r—2 d —=2r+w.
M 6r w an M T w

Find the eigenvalues and eigenvectors:(If) = w(0) = 30 what are the populations
at timet? After a long time, what is the ratio of rabbits to wolves?

[g ‘ﬂ has\; = 5, @) — m No =2, @y — H rabbitsr(t) — 20 + 10¢2,

w(t) = 105t +20e2t. The ratio of rabbits to wolves approacl€g10; ¢5* dominates.
15 (a) Write(4,0) as a combinatiom x; + coxo 0f these two eigenvectors dff:

o 1][1] .1 o 1] 1]_ .[1
—1 0f|i| =" —1 0| |=i| = " =il
(b) The solution taly/dt = Ay starting from(4, 0) is cretta+ese My, Substitute
et = cost +isint ande™* = cost — isint to find y(t).

41 4|1 1 ot |1 _a| 1| _ |4cost
(@) [0] =2 M+2 {_J (b) Theny(t) = 2e L.]+2e {_J = [4sint]'
Questions 16—19 reduce second-order equations to first-oed systems for(y, y’).

16 Find A to change the scalar equatigff = 5y’ + 4y into a vector equation foy =

(v, y'): T ,
2] )fr)m

What are the eigenvalues df? Find them also by substituting = ¢ into y” =
5y + 4y.
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dly| (¢ [0 1]y 10 1 12 _
E{y’}_{y”]_[ﬁl 5:| [y/].A—[4 5:| hanet(A—/\I)—/\—5/\—4—O.

Directly substituting = e*! intoy” = 5y’ + 4y also gives\? = 5\ + 4 and the same
two values of\. Those values arg = %(5 + v/41) by the quadratic formula.

17 Substitutey = e into y” = 6y’ — 9y to show that\ = 3 is a repeated root. This is
trouble; we need a second solution aftér. The matrix equation is

diyl_[ 0 1]]y

at |y -9 6] |y |
Show that this matrix has = 3, 3 and only one line of eigenvectorbrouble here too
Show that the second solutiong8 = 6y’ — 9y is y = te>t.

A= {_8 é] has trace &let 9, A = 3 and 3 withoneindependent eigenvect(r, 3).

18 (a) Write down two familiar functions that solve the equatiy/dt?> = —9y. Which
one starts withy(0) = 3 andy’(0) = 0?

(b) This second-order equatigfi = —9y produces a vector equatign = Ay:

_ | dy _[y']_[ 0 1][y]_
Findy(t) by using the eigenvalues and eigenvectordnf;(0) = (3, 0).
(@) y(t) = cos 3t andsin 3t solvey” = —9y. Itis 3 cos 3t that starts withy(0) = 3

andy/(0) = 0. (b) A=|_g | hasdet = 9: A = 3i and—3i with & = (1,3i)
; _ 33| 1 3 36t 1] | 3cos3t
and(1, —3i). Theny(t) = 5e {32] + e {_32.] = [—9sin3t .

19 If ¢ is not an eigenvalue ofl, substitutey = ¢“v and find a particular solution to
dy/dt = Ay — e“tb. How does it break down whenis an eigenvalue oft ?

Substitutingy = e‘v givesce®v = Aev — ebor (A —cl)v = borv =
(A—cI)~1b = particular solution. It is an eigenvalue theA — cI is not invertible.

20 A particular solution taly/dt = Ay —bisy, = A~1b, if Aisinvertible. The usual
solutions tady /dt = Ay givey,,. Find the complete solutiop = y,, + vy,

o
y,=4andy(t) =ce' +4; y,= [3] andy(t) = ciet m + coet m + H

21 Find a matrixA to illustrate each of the unstable regions in the stabilitgype :

@ %=y ® Y-} v-

(@ A\ <0andds >0 (b) A\ >0and), >0 () \=a=+ibwitha > 0.
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(a) [(1) _ﬂ (b) {(1) (1)] (c) {_1 1] These show the unstable cases

(@ A1 <0andiy >0 (b) Ay >0and)\; >0 (¢c) A=a+ibwitha >0
22 Which of these matrices are stable ? Them\Re 0, trace< 0, and det> 0.

-2 -3 -1 -2 -1 2
Al—[—4 —5] AQ—{—?) —6} A3—[—3 —6]'
Aj is unstable (trace- —7 but determinant —2; Ay < 0 but A > 0).
A, is unstable (singular s®;, = 0).

As is stable (trace= —7 and determinant2; \; < 0 andAs < 0).

23 For ann by n matrix with trace(A) = T'and def A) = D, find the trace and determi-
nant of—A. Why isz’ = — Az unstable whenevey’ = Ay is stable ?

If trace(A) = T thentracd —A) = —T
If determinant 4) = D then determinant—A4) = (—1)"D
The eigenvalues of A are—(eigenvalues ofl).

24 (a) ForareaB by 3 matrix with stable eigenvalues (Re< 0), show that trace< 0
and det< 0. Either three real negativeor else\, = A\; and\; is real.

(b) The trace and determinant oBdy 3 matrix do not determine all three eigenval-
ues! Show thatl is unstable even with trace 0 and determinant 0:

1 2 3
0 1 4].

0 0 -5

A:

(a) If all three real parts are negative (stability), traegum of real parts< 0.

Also det = \; A A3 < 0 from 3 negative\'s or from (a+ib)(a—ib) A3 = (a®+b?) A3 <0.
If a real matrix has a complex eigenvalde= a + ib, then\ = a — ib is also an
eigenvalue. The third eigenvalue must be real to make tke teal.

(b) The triangular matrix4 hasA = 1,1, —5 even with trace= —3 anddet = —5.
There must be a third test f8rby 3 matrices and that test must fail for this matrix.

25 You might think thaty’ = — A%y would always be stable because you are squaring the

eigenvalues ofl. But why is that equation unstable fdr= { _(1) (1) ] ?

This real matrixA has)\ = i and—i. ThenA\?> = —1 and—1. Soy’ = —A2%y has
eigenvalueg and1 (unstable).

26 Find the three eigenvalues dfand the three roots &f — s? + s — 1 = 0 (including
s = 1). The equationy”” — y” +y’' — y = 0 becomes

Y 0 1 0 Y
y’ =0 01 y’ or z/ = Az.
y// 1 -1 1 y//

Each eigenvalug has an eigenvectar = (1, \, \?).
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s3 — 52 + 5 — 1 = 0 comes from substituting = et intoy"” —y” +y’ —y = 0.

A3 — A2 4+ X — 1 = 0 comes from computindet(A — \I) for the3 by 3 matrix.

One rootiss = 1 (andX = 1). The full cubic polynomial is

s3—s?+s—1=(s—1)(s*>+ 1) with roots1, ¢, —i.

Eigenvectorgl, A\, A\?) = (1,1,1), (1,4, —1), (1, —i, —1) for this companion matrix.
27 Find the two eigenvalues of and the double root of? + 6s +9 =0:

’
y" + 6y’ +9y=0 becomes{z,} _[8 é} {Z,] or 2/ = Az.

The repeated eigenvalue gives only one solutioa ez. Find a second solutioa
from the second solution = te*t.

The matrix hasdet(4 — A\I) = A% + 6\ + 9. This is (A + 3)2 so eigenvalues

A = rootss = —3,—3. The two solutions arg = ¢3¢ andy = te~3'. Those
_| ¥ _ -3t 1 _ 1Y _ -3t t
translate taz = [ " ] =e { -3 ] andz = { Y/ } =e [ 1—3t}
28 Explain why a3 by 3 companion matrix has eigenvectoss = (1,,A2).

First Way: If the first component isc; = 1, the first row of Ax = Ax gives the
second component, = . Then the second row oz = Az gives the third
components = \2.

Second Way y’ = Ay starts withy] = yo andys = y3. y = ez solves
those equations. At= 0 the equations becomer; = x5 and .

0 1 0 1 1
Ax = 0 0 1 A =X| A because row$ and?2 are true and
-D -C -B A2 A2

row3is —D — CA — BA? = \3. Thatis\® + BA? + C\ + D = 0 corresponding to
y///+By//+Oy/+Dy — O

29 Find A to change the scalar equatigfi = 5y’ — 4y into a vector equation fot =

(¥, 9): . /
alvl-l ]

What are the eigenvalues of the companion maf?x Find them also by substituting
y = eMintoy” = 5y — 4y.

dz _ [y | _ |y 01|y |_
(- [u]- 22][5)m

The eigenvalues come fron? — 5\ +4 = 0. Then\ = 1 and4. Unstable because
y" — 5y’ + 4y has negative damping.

30 (a) Write down two familiar functions that solve the equatiBy /dt> = —9y. Which
one starts withy(0) = 3 andy’(0) = 07?
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(b) This second-order equatigfi = —9y produces a vector equatier = Az :

_|v dz _ [y | _[ 0 1]y |_
A MR E R R
Find z(t) by using the eigenvalues and eigenvectord ok (0) = (3,0).
(@) y1 = cos3t andy, = sin 3t and their combinations solvg’ = —9y. The initial
conditionsy(0) = 3,y’(0) = 0 are satisfied by = 3 cos 3t.

A 1

(b) The matrixA hasdet [ 9 )

(1,34), (1, —34).

} = A2 +9=0and) = 3i, —3i. Eigenvectors

z(t) = clegit |:3%L:| + CgeigiiE |:_3£:| give5c1 + c9 = 3 and3ic; — 3icog = 0 att = 0.

Thenc; = ¢y = ggives[ Z, } = 263“ { zl)ﬂ }4—36‘3“ [ _311. } = [ —?53(:1)1’513: ]
31 (a) Change the third order equatigfl — 23" — ¢’ + 2y = 0 to a first order system
2z’ = Az for the unknownz = (y,y’,y"”). The companion matrid is 3 by 3.
(b) Substitutey = e** and also find dgt4 — AI). Those lead to the samks.
(c) One rootis\ = 1. Find the other roots and these complete solutions::

y = creM 4 cpe?! 4 czetat z = CreMixy + Coe™lay + Cyetslas.
/
Y 01 0 Y
@z'= |y’ = 0 0 1 y' | = Az
yl/ ) 1 2 yl/

(b) The characteristic equationdst(A — AI) = —(A\3 —2)\2 — A +2) = 0.

(c) A =1lis aroot so we can factor ogk — 1):

A =2X2 - A4+2=A-1)(N2=21-2)=(A—-1)(A—2)(A\+1) hasrootd, 2, —1.
The complete solution ig = ¢ e? + coe® + cze?.

1 1 1
This vectorizesintez = Ciet | 1 | +Ce?* | 2 | +Cse™t | —1 ]
1 4 1

32 These companion matrices have= 2,1 and\ = 4, 1. Find their eigenvectors:

A= { _(2) :1)) } and B = [ _2 é ] Notice trace and determinant!

AhasA\? —3A+2=0=(A—2)(A—1). A = 2,1 with eigenvectors{ ; ] and{

|
|

1
1
Bhas)? -5 A+4=0=(A—4)(A—1). A = 4,1 with eigenvectors{ }1 } and{ }
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Problem Set 6.4, page 369

1 If Az = Az, find an eigenvalue and an eigenvectoeéf and also of-e—4t,
If Ax = Az thene?tx = e*z and—e 4tz = —e~*z. Use the infinite series :
ee = (I+ At + 5(At)> + -z
=T+ X+ i(N)?*+-- )z =eMa.
2 (a) From the infinite seriest = I + At + - - - show that its derivative igle/?.

(b) The series foelt ends quickly ifA = { 8 (1) ] becausel? = [ 8 8 } .
Find e1 and take its derivative (which should agree wita1?t).

(a) The time derivative of the matrix'* is Ae?:

LI+ At+ F(A)? + LA+ ) = A+ A%+ LA3 2 + ) = Aet
0 1

(b)IfA_[O 0

]thenAQ_OandeAt—I+At— [(1) f]

The derivative ob4* = [ 1t } is [ 01 ] which agrees withde4?.

0 1 0 0
This derivative also agrees with itself but that is an accident.
3 ForAd = [ (1) ; } with eigenvectors i = { (1) 1 ] computeeAt = VeAty -1,

At At |11 et 1 1] [et e?—et
e = VeV —[01 o 1|70 e |

Checke?t =T att = 0.
4 Why ise (413Dt equal toeA? multiplied bye3! ?
If AB = BA thene(A+B)t = eAteBt (This usually fails ifAB # BA.)
Here B = 31 always givesAB = BA soe(A+30t = ¢Atedlt — oAte3t jstrye,
5 Whyise4 ' notthe inverse o4 ? What is the correct inverse eft ?
The correctinverse af! ise~4. In generak?*eA” = A(+T) Choose=1,T = —1.
The matrixe ' is a series of powers of ~! and(e4)(e” ') = eA*4 ' : not wanted.

1

0

6 Computed” = [ 1

n . .
0 } . Add the series to find** = [ i c(e’ = 1) }

Start by assumin% (1) 8 } = { (1) %c ] (certainly true for ¢ = 1).

n+1
. 11 e |1 e 1 ne| |1 (n+1)c
Thenbymductlon[O O} _{O O][O 0 ]_{O 0 }

The first equation is true for = 1. Then the second equation says that every matrix
multiplication adds: to the off-diagonal entry. So the first equation is true ok
2,3.4,...
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10

11

Now add up the series fer'’ :
T+t+ 32+ O+ct+ 32+
0 14+0+0+---

Find e” ande®? by using Problem 6 for = 4 andc = —4. Multiply to show that the
matricese“e? andePe? ande4+Bare all different.

w[3a] ] wee[28]

[+At+1(At)* 4 =

_ [eot c(etl— 1)]

R 14 A_| e 4le—-1)
With ¢ = 1 in Problem 6, A = { 0 0 } hase” = [ 0 1 ]
1 -4 B_ | e —4e-1)
B= [ 0 0 ] hase” = [ 0 1 ]
Thene?e? = { ¢ (~detd)(e—1) } andefe” = [ ¢ (de—4)(e—1) ] and
0 1 0 1
2
eATB = 60 (1) } Those three off-diagonal entries are different becatiBeand

B A have off-diagonals-4 and4.
Multiply the first termsl + A + 1 A2 of e by the firsttermd + B + 1 B? of ¢5. Do

you get the correct first three termseft? 2 Conclusion e4* 2 is not always equal
to (e4)(e?). The exponent rule only applies wheii3 = BA.

(I+A+34)(I+B+4B?) = I + A+ B+ 34 + AB + {B> + ---
The correct three terms @f'*? arel + A + B + 1A% + 1AB + 1BA + 1B%
ThenAB agrees withf AB + ; BA only if AB = BA.

Write A = [§ &] in the formVAV ~1. FindeA! from VeAty =1,

This is Problem 6 using diagonalizatioh= VAV ~! by the eigenvector matrik :

SRR THIEN
Rt (NI RN )

Starting fromy(0) the solution at timet is e“'y(0). Go an additional timet
to reached eAty(0). Conclusione? timese4? equals .

The conclusion is that!? timese“? equals:?4?. No problem withAB # B A because
hereB is the same ad.

Diagonalize4 by V and confirm this formula foet by usingVeAty—1:

2t 3t _ 2t
A:{g g] eAt:{S iigte e*) At t =0 this matrixis .



182 Chapter 6. Eigenvalues and Eigenvectors

01 —47 1
3“0 1}_VAV

At 1 4 €2t O
€ =10 1 0 et

12 (a) FindA? andA3 andA™ for A =

2t 3t _ 2t
[e Ae 3t8)]_Iatt:0.
e

1 ] with repeated eigenvalues= 1, 1.

(b) Add the infinite series to fineit. (The VetV —1 method won’t work.)

(a)A?:[(l) %}andA?’:[(l) HandAnz[(l) H (b) At =
T4+t+ 512+ t+ 3202+ 3363+ - -

0 T+t+ 22+ 0 et

let t(l—l—t—i—%tQ—i—---)]

Notice the factor appearing as usual when there are equal roots (or equalaiges).
13 (a) Solvey’ = Ay as a combination of eigenvectors of this matdix

y’—[_? Hy with y(O)—[g}

(b) Write the equations ag = y» andy), = y;. Find an equation foy] with y
eliminated. Solve fog; () and compare with part (a).

1 -1

(b) If y{ = yo andy, = y1 theny!" = y; = 1.
The second order equatigfl = y; hasy; = cie! + coe™.
The initial conditions produce the solution of part (a).
14 Similar matricesA and B = V1AV have thesame eigenvalue$ V is invertible.

Second proof  det(V"'AV — XI) = (detV ') (det(A — AI)) (detV).

Theny(0) = 4z, — x2 andy(t) = 4e [ ! ] —et { ! ]

Why is this equation true ? Then both sides are zero wheflet \T) = 0.
We use the ruldet ABC = (det A)(det B)(det C).

HereA = V—! andC = V have(det A)(det C) = 1.

This only leaveslet B which isdet(A — AI).

Conclusion V~1 AV has the same eigenvalues ad. Similar matrices!
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15

16

17

18

19

20 Solvey’ = Ay = [

If B is similar to A, the growth rates foe’ = Bz are the same as fay/ = Ay.
That equation converts to the equation fovhenB = V1AV andz =

If y/ = Ay just sety = VztogetVz' = AVz whichisz’ = V- 1AVz.
Similar matrices come from a change of variable in the défféial equation.

If Az = \x # 0, whatis an eigenvalue and eigenvecto(@?t -NA"1?

The samex is an eigenvector, with eigenvalue in

1 M
(M —DA 'z = S (e ~ D = c —
The matrix B = [J~4] hasB? = 0. Find eB! from a (short) infinite series.
Check that the derivative ef®! is BeB.
Bt __ - 1 -4t . . . 0 —4
e _I+Bt+0_[0 1 ].Thedenvanvels{O O]'

The derivative is alway8e??; here it also equalB.

Starting fromy(0) = 0, solvey’ = Ay + g as a combination of the eigenvectors.
Suppose the sourceis= q1x1 + - - - + qnx,. Solve for one eigenvector at a time,
using the solutiony(t) = (e — 1)q/a to the scalar equatiofl = ay + q.
Theny(t) = (eAt — I)A~1q is a combination of eigenvectors when &l 0.
At
eMt —1

For each eigenvectar, a solutiontay’ = Ay +xisy(t) = x by Problem 16.

Ait
it —1 . .
g;x; is the solution whew = ¢1 1 + - - - + g,

Then by linearityy(t) = X

This is the same ag,, (1) = (e — I)A™'q.
Solve fory(t) as a combination of the eigenvectars = (1,0) andxzy = (1,1):
;L yvi | 11 Y1 4 o oy1(0)=0
v =4dyta [ylz]_[o 2 Y2 + 3 with y2(0) =0
Write g = [

g ] as a combinatiofx; + x- of the eigenvectors ofl. By Problem 18,

et —1 et — 1

yp(t) = 1 3x1 +

ro.

[\)

9 i1’> } y in three steps. First find thes andx’s.

(1) Write y(0) = (3,1) as a combination; x; + coxo
(2) Multiply ¢; andc, by e** ande?2?.
(3) Add the solutiong;;e*ta; + coet2tas.
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21

3
1-A

o[ 1]
1)

Step (2) Two solution%e‘“ { g } andge—t { 1 ]

Th eigenvalues come frodet [ 2 ; A
Then\ =4 and—1.

} = M2-3 4= (A—4)(A+1) = 0.

The eigenvectors are found to Ipg = [
3 3
sep 0 0[] =4[ 4]+

-1

Step (3) y(t) = %e‘“ [ g ] + %e*t { _% ]

Write five terms of the infinite series fer}!. Take thet derivative of each term. Show
that you have four terms ofe4?. Conclusion:eAty(O) solvesdy /dt =

=TI+ At+ < (At) %(At)3 + 2—14(At)4 +
d

1
At _ 2 _32 2A443 . At
_dt(e A+ A t+2At +4At + Ae”t.

Problems 22-25 are about time-varying systemg’ = A(t)y. Success then failure.

22

23

24

Suppose the constant matriX hasCx = Az, andp(t) is the integral ofa(t).

Substitutey = ez to show thatdy/dt = a(t)Cy. Eigenvectors still solve
this special time-varying system: constant mattixmultiplied by the scalau(t).

Here the time-varying coefficient matrix has the speciatfart)C, with the matrixC
constant in time. Its eigenvalues and eigenvectora@ne. anda (main point: A and
x are constant). Then we can solyé= a(t)Cy starting with an eigenvector:

d
y(t) = e/ * g solves TV —a(t)hy = a(t)Cy.

A combination of these solutions is also a solution—and catchy(0).

Continuing Problem 22, show from the seriesfé(tt) = eP()C thatdM /dt = a(t)CM.
Then M is the fundamental matrix for the special systgin= a(t)Cy. If a(t) = 1
then its integral ig(t) = t and we recovei = *.

This question puts together the “fundamental matdi£(¢) from Problem 22. Write
p(t) = /a(t) dt.

M = ePWC =T 4 p(t)C + %pQ(t)CQ +--- and% = a(t) give

L~ )+ a()O%p() + - = a(t)OM.

2t

O =

The |ntegral ofA = [ 0 0

2
} is P = [t t } The exponential ofP is

et = t(e' ~1) ] From the chain rule we might hope that the derivative of
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eP®) js P'eP®) = AeP(®). Compute the derivative of”(*) and compare with the
wrong answerde” (), (One reason this feels wrong: Writing the chain rule as
(d/dt)e” = ePdP/dt would givee® A instead ofd e”. That is wrong too.)

Now the matrixA(t) does not have the special forhh= a(t)C' of problems 22-23.
The problem shows that the simple formula doesn't sgie= A(t)y. We can't just
integrateA(t) and use the matrix/ At

2 2 3 n n+1
P_/A(t)dt_{tt] hasPQ_{t t} and P"_[t t ]

0 0 0 O 0 0
P [1 2t] P 1, et tet =t
Thenﬁ_[O 0}_Aande _I+P+§P =1 1 .

But the derivative of e’ is not e’ 2€. This matrixe”*) is not solvingy " = A(t)y.
25 Find the solutiontay’ = A(t)y in Problem 24 by solving fog, and thery; :

Solve {Zg;ﬁi] = {(1) 20t] [Zj starting from[gy/;ggg].

Certainly y2(t) stays aty2(0). Find y;(¢) by “undetermined coefficientsA, B, C':
y{ = y1 + 2ty2(0) is solved by y; =y, + y,, = At + B + Cet.
ChooseA, B, C to satisfy the equation and match the initial conditig0).

The wrong answer in Problem 24 included the incorrect faetoin e”®).
To solvey’ = A(t)y in Problem 24 we can start with its second equation :
dy,/dt =y1 + 2t
y' = Aty is 1/ Y1 Y2

dys/dt =0

Thenyz(t) = y2(0) = constant and the first equation beconigs/dt = y1 + 2ty2(0).
A particular solution has the forgym = At + B. Substitute thig); to find A andB:

% = y1 + 2ty2(0) givesA = At + B + 2ty,(0) and thend = —2y,(0) = B.

Now add a null solutiore’ to start fromy; (0):
y1(t) = (y1(0) + 2y2(0))e" — 2y2(0)t — 2y2(0).
This correct solution has no factor?.

Problem Set 6.5, page 379

Problems 1-14 are about eigenvalues. Then come differentiequations.
1 Which of A, B, C have two real\’s ? Which have two independent eigenvectors ?

7 —11 7 —11 7 —11
A:[—ll 7] 32[11 7] C:[o 7}
Ais symmetric: Real’s with a full set of two eigenvectors.
B = 71+ antisymmetric: Complex = 7 + 114, full set of (complex) eigenvectors.

Cc=171-11 [ 8 (1) ]: Eigenvalueg, 7 but only one eigenvector.
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2 Show thatA has real eigenvaluesif> 0 and nonreal eigenvaluestif< 0:

0 b 10
A_[l 0} and A_[l 1}

The eigenvalues oﬁ (1) 8 ] haveA? — b= 0. Then\ = +vb if b>0.

[} f}has/\zli\/g.

3 Find the eigenvalues and the unit eigenvectors of the synomeatrices

2 2 2 1 0 2
(a)S_l2 0 O] and (b) S—[O -1 —2].
2 00 2 =2 0

1 = (2= M)A+ 4N +4X = =23 +2)2 + 8\
0

I-X 0 2
(b)det[ 0 —1-Xx -2 ] =AML= A2) 4+ 4(14+A) —4(1—A) =9xA — A3
2 —2 -

=-XA=3)(A+3).
. . [ 27 1] 27 1]
A = 0,3, —3 with orthonormal eigenvectors 2, = —-11], = 2 |.
SL-1] 3] 2] 3] 2

4 Find an orthogonal matrig that diagonalize$ = ] What isA?

6
The eigenvalues from? — 5\ — 50 = 0 = (A — 10)(A + 5)
The unit eigenvectors are @ :
[ 1/ —2/V5 , 10 o0
Q_[2/\/5 YN with A= 0 —5 |-

5 Show that thisd (symmetric but complex) has only one line of eigenvectors:

rex; = 10 and\; = 5.

A= { ! _i } is not even diagonalizable. Its eigenvaluestaamdo.

AT = Ais not so special for complex matricéEhe good property isl = A.

det(A — A\I) = \? givesA = 0, 0. But A — \] = A hasrank 1: Only one line of
eigenvectors in its nullspace.
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6

7

10

11

Find all orthogonal matrices from alt;, x5 to diagonalizeS = {13 %g]

A2 — 25X\ = 0 gives eigenvalueB and25. The (real) eigenvectors i) can be

o L[ 4 3) g L[4 3] L[ 4 8] 1[4 -3
5| -3 4 5| 3 4 5| -3 —4 5| 3 -4

10

(a) Find a symmetric matrig = { b1 ] that has a negative eigenvalue.

(b) How do you know thaf must have a negative pivot?

(c) How do you know thab' can’t have two negative eigenvalues?
The determinant of is negative ifb?> > 1. This determinant is (pivot)(pivot 2).
Also det S = \; times)\,. So exactly one eigenvalue is negativéif> 1.

If A2 = 0then the eigenvalues of must be . Give an example withl # 0. But
if A is symmetric, diagonalize it to prove that the matrixlis= 0.

If Az = Az thenA?z = \2x. Here A2 = 0 so\ must be zero.

Nonsymmetric exampled = [ 8 (1) } is not diagonalizable.

0 0

The only symmetric example ¥ = { 0 0

] becausel = QAQT andA = [ 8 8 }

If A = a+ibis an eigenvalue of a real matri, then its conjugate = a — ibis also
an eigenvalue. (Ifdz = \x then alsoAT = \x.) Prove that every red by 3 matrix
has at least one real eigenvalue.

A real 3 by 3 matrix hasdet(A — M) = —A3 + 20?2 + ¢1\ + ¢co = 0. If \; satisfies
this equation so does, = \; (take the conjugate of every term). But the sim+
Ao + A3 = trace ofA = real number. SA3; must be real.

Here is a quick “proof” that the eigenvaluesalf real matrices are real:

T

. A .
False proof Ax = x gives zTAx =X z'x so )= % is real.

Find the flaw in this reasoning—a hidden assumption that igustified. You could
test those steps on t#6° rotation matrix(0 —1; 1 0]with A =¢andx = (i, 1).

The flaw is to expect that™ Az andx™x are real ande™x > 0. When complex
numbers are involved, it 8"« that is real and positive for every vecter# 0.

Write A and B in the form Az 2T + X\axozd of the spectral theorenAQT :

3 1 9 12
A= [ 1 3 } b= [ 12 16 ] (keep||z1 || = [|z2|| = 1).

A has) = 4, 2 with unit eigenvectors iri). Multiply columns times rows:
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][] el
—a| e ve —yva ez R [T yve ave )

B has\ = 0, 25 with these unit eigenvectors @

o 12] [ 4/5 3/5][0 4/5 —3/5] 3/5
[12 16} = [—3/5 4/5] { 25] [3/5 45| =025 | g5 | [3/4 4/5].
12 What numbet in [2 5] makes4 = QAQT possible? What number makels =
VAV ~!impossible? What number makds ! impossible?

b = 1 makes4 symmetric and thedl = QAQT. b = —1 makes\ = 1, 1 with only
one eigenvectoh = 0 makes the matrix singular.

13 This A is nearly symmetric. But its eigenvectors are far from ogihzal:

A= 1 107 has eigenvectors 1 and [ 7]
10 141077 9 0 '

What is the dot product of the two unit eigenvectors ? A smadila!

. 1
The unit eigenvector fok = 1 + 10715 is — [ 1 ] :
V21
The two eigenvectors are atld ° angle, far from orthogonal (even if is nearly sym-
metric).

14 (Recommended) This matri¥/ is skew-symmetric and also orthogonal. Then all its
eigenvalues are pure imaginary and they also have- 1. They can only bé or —i.
Find all four eigenvalues from the trace bf:

0 1 1 1

1 -1 0 -1 1 . ) .

M = ﬁ 1 1 0 -1 can only have eigenvaluésr — i.
-1 -1 1 0

The four eigenvalues must be= i, 4, —i, —i to produce trace- zero.
15 The complete solution to equation (8) for two oscillatingisgs (Figure 6.3) is

y(t) = (A, cost + B sint) { } ] + (Ay cosV/3t 4 By sinv/3t) { _11 ] _

Find the numbersl,, A2, By, Bs if y(0) = (3,5) andy’(0) = (2,0).
The numbersi;, A, come fromy(0) = (3, 5) sincecos0 = 1:

o[t )]

g } gives A; =4 and Ay = —
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The numbersB;, Bo come fromy’(0) = (2,0) since(sint)’ = 1 att = 0 and
(sin/3t)! =v/3att =0:

1 1 2 . 1

Blz|:1:|+\/§B2|:_1:|:|:O:| gives Bl:BQ:%.

16 If the springs in Figure 6.3 have different constakhitsks, k3 theny” + Sy = 0 is

Upper mass y{ + k1y1 — ka(y2 —41) =0 g_ | itk —k
Lower mass y4 + ka(y2 — y1) + k3y2 = 0 B —ko kot k3

Fork, = 1,ks = 4,ks = 1 find the eigenvalues = w? of S and the complete
sine/cosine solutiog(¢) in equation (7).

1+4 —4
-4 441
The complete solutiontg” + Sy =0 is

The matrixS = { has eigenvalues; = 1 = w? and\; = 9 = w3.

y(t) = (Aj cost + By sint) { ! } + (Ag cos 3t + B sin 3t) [ _1 ] .

1 1

17 Suppose the third spring is removed (= 0 and nothing is below magy. With k; =
3, ke = 2in Problemi6, find S and its real eigenvalues and orthogonal eigenvectors.
What is the sine/cosine solutig(t) if y(0) = (1,2) gives the cosines angl (0) =
(2,—1) gives the sines ?

5 =2

Whenk; = 3,ks = 2,ks = 0, the matrixS becomesS = [ 9 9

} with
AN —TA+6=A-1)(A—6)=0.
The eigenvector fon; = w? = 1isx; = (1,2). The orthogonal eigenvector for
Xy = ws = 6isxy = (2,—-1). Thend; = 1 and4; = 0,B; = 0 andBy =
1/4/6 come fromy(0) = x; andy’(0) = x,. The solution toy” + Sy = 0 is
y(t) = (cost)z1 + (sin V6t)z2/V/6.

18 Suppose the top spring is also removéd & 0 and alsoks = 0
Find its eigenvalues and eigenvectorsy(f) = (1, —1) andy’ = (
y(0) changes fronfl, —1) to (1, 1) what isy(¢) ?

). S is singular!
0,0) find y(t). If

5= [ _Zz "Z } has\; = 0 with 21 — (1,1) ands — 2k, with @ — (1, 1),

y(0) = (1,—1) and y'(0) = (0,0) give y(t) = (cos /2kat) 5.
y(0) = (1, 1)and y’(0) = (0,0) give y(t) =x; = (1,1) : no movement!
There is no force from springsand3 and no initial velocityy’(0).

19 The matrix in this question is skew-symmetrid{ = —A). Energy is conserved.
d 0 ¢ —b yi = cy2 — bys
v _|_. o ' —
dt = (& aly or 1]2/ = ays CY1
b —a 0 Y3 = by1 — aye.
The derivative of ly(t)|? = v + y3 + v3 is 2u1y] + 2y205 + 2y3v5.

Substitutey], y4, y4 to getzera The energyfjy(¢)||? stays equal tgy(0)]|>.
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20

21

22

23

Y1yl + y2y5 + ysys = y1(cya — bys) + y2(ays — cyr) + y3(bys — ays) = 0.
Then||y(t)||? stays constant, equal figy(0)]|2.

WhenA = —AT is skew-symmetrice? is orthogonal. Prove (e4!)T = ¢—At
from the serieg’ = I + At + 1 A%2 + ...
A=|_o L] hasdet = 0: A = 3i and—3i with @ = (1,3) and(1,~3i). Then

_3.3a| 1 3 _3it 1 | 3cos3t
y(t) = 3¢ {32] + 3¢ {—31] = [—9sin3t :
The mass matrid/ can have masses; = 1 andmsy = 2. Show that the eigenvalues
for Kz = AMx are\ = 2 + /2, starting from deti’ — \M) = 0:

10
0 2

2

- :

] and K = {_ _Z] are positive definite.

Find the two eigenvectors; andx,. Show thateT x5 # 0 butzl Mz = 0.
Kz = Mzis (K — AM)x = 0 and we need the determinantf— \M to be0:

2—-A -2

4+/16 -8
ISR =5 —=2%V2

det[ ]:2(/\2—4)\+2)=0 A

The eigenvectors; = (1/2, —1) andz, = (1/2, 1) come from

_g _2\_/5] x1=0and(K — o M)xy = [\_/g 2\_/5} xy = 0.

Notice thatz; is not orthogonal tar,—it is “ M -orthogonal”:
1 0
mirM:cQ—[\/i—l}[()?}[\/?]—O.

What difference equation would you use to soyé = —Sy ?

y" = —Sy is well approximated by, 11 — 2y, + yn_1 = —(At)2Sy,. The initial

conditions come in ag, = y(0) andy; = y(0) + Aty’(0) (but that is only a first order
accurate approximation to the tryéAt)).

The second order equatigr’ + Sy = 0 reduces to a first order systeyn’ = y, and
y2' = —Sy,. If Sz = w2z show that the companion matrik = [0 I ; —S 0] has
eigenvaluesw and—iw with eigenvector$x, iwz) and(x, —iwx).

The first-order equation withlockcompanion matrix foy” = —Sy is

Y1 ' |y ' . 0 I Y . 0 I Y1
v2| |y | | -5 0 y' || -5 0 Y2
For the eigenvalues: Bz = w?x then
0 I T | fiwz | L T
-S 0 || tiwe | 7| —w?x | T Y| tiwe |

So the block companion matrit has eigenvaluesy and—iw. Then we can compute
and use the exponential® (if we want to).

(K =\ M)z, = [
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24 Find the eigenvalues\ and eigenfunctionsy(z) for the differential equation
y" = Ay with y(0) = y(r) = 0. There are infinitely many !

This is an important problem in function space—instead gémvectors irR™ we look
for functions ofz betweenr = 0 andx = = :

2
% = A\y(z) with boundary conditiong(0) = y(7) = 0.
This equation is satisfied by(z) = a cos (\/X x) + bsin (\/X x)
The boundary conditiop(0) = 0 makesz = 0.
The conditiony () = sin (\/X w) =0 makesyA=1or2or3or... Then

A =12 or 22 orany n? y(z) =sin(VAx).



