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162 Chapter 6. Eigenvalues and Eigenvectors

6

Problem Set 6.1, page 333

1 A has eigenvalues1 and 1
2 , A2 has eigenvalues1 and(12 )

2 = 1
4 , A∞ has eigenvalues1

and0 (notice(12 )
∞ = 0).

(a) Exchange the rows ofA to getB:

B =

[
.2 .7
.8 .3

]
has eigenvalues1 and− 1

2 .

B is still a Markov matrix, soλ = 1 is still an eigenvalue. The sum down the main
diagonal (the “trace”) is now.5 so the second eigenvalue must be−.5. Then
trace= .2 + .3 = 1− .5.

Zero eigenvalues remain zero after elimination because thematrix remains singular and
its determinant remains zero.

2 A hasλ1 = −1 andλ2 = 5 with eigenvectorsx1 = (−2, 1) andx2 = (1, 1). The
matrixA + I has the same eigenvectors, with eigenvalues increased by1 to 0 and6.
That zero eigenvalue correctly indicates thatA+ I is singular.

3 A hasλ1 = 2 andλ2 = −1 (check trace and determinant) withx1 = (1, 1) and
x2 = (2,−1). A−1 has the same eigenvectors, with eigenvalues1/λ = 1

2 and−1.

4 A hasλ1 = −3 andλ2 = 2 (check trace= −1 and determinant= −6) with x1 =
(3,−2) andx2 = (1, 1). A2 has thesame eigenvectorsasA, with eigenvaluesλ2

1 = 9
andλ2

2 = 4.

5 A andB have eigenvalues1 and3. A+B hasλ1 = 3, λ2 = 5. Eigenvalues ofA+B
are not equalto eigenvalues ofA plus eigenvalues ofB.

6 A andB haveλ1 = 1 andλ2 = 1. AB andBA haveλ = 2±
√
3. Eigenvalues ofAB

are not equalto eigenvalues ofA times eigenvalues ofB. Eigenvalues ofAB andBA
are equal (this is proved in section 6.6, Problems 18-19).

7 U is triangular so its eigenvalues are the diagonal entriesu11, u22, . . . , unn. (This is
because det(U − λI) will be just the product(u11 − λ)(u22 − λ) . . . (unn − λ) from
the main diagonal.)

A =

[
1 1
1 1

]
with λ = 2 and0 U =

[
1 1
0 0

]
hasλ = 1 and0.

8 (a) Multiply Ax to seeλx which revealsλ (b) Solve(A− λI)x = 0 to findx.

9 (a) Multiply by A: A(Ax) = A(λx) = λAx givesA2x = λ2x (b) Multiply by
A−1: x = A−1Ax = A−1λx = λA−1x givesA−1x = 1

λ
x (c) Add Ix = x:

(A+ I)x = (λ + 1)x.

10 A hasλ1 = 1 andλ2 = .4 with x1 = (1, 2) andx2 = (1,−1). A∞ hasλ1 = 1 and
λ2 = 0 (same eigenvectors).A100 hasλ1 = 1 andλ2 = (.4)100 which is near zero. So
A100 is very nearA∞: same eigenvectors and close eigenvalues.

11 With λ = 0, 1, 2 the rank is2. The eigenvalues ofB2 are0, 1, 4. The eigenvalues of
(B2 + I)−1 are(0 + 1)−1 = 1, (1 + 1)−1 = 1

2 , (4 + 1)−1 = 1
5 .
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12 The projection matrixP hasλ = 1, 0, 1 with eigenvectors(1, 2, 0), (2,−1, 0), (0, 0, 1).
Add the first and last vectors:(1, 2, 1) also hasλ = 1. NoteP 2 = P leads toλ2 = λ
soλ = 0 or 1.

13 (a) Pu = (uuT)u = u(uTu) = u soλ = 1 (b) Pv = (uuT)v = u(uTv) =
0 (c) x1 = (−1, 1, 0, 0), x2 = (−3, 0, 1, 0), x3 = (−5, 0, 0, 1) all havePx = 0x =
0.

14 Two eigenvectors of this rotation matrix arex1 = (1, i) andx2 = (1,−i) (more
generallycx1, anddx2 with cd 6= 0).

15 These matrices all haveλ1 = 0 andλ2 = 0 (which we can see from trace= 0 and
determinant= 0):

A =

[
0 0
0 0

]
A =

[
0 1
0 0

]
hasA2 = 0 A =

[
a −a
a −a

]
hasA2 = 0.

16 λ = 0, 0, 6 (notice rank1 and trace6) with x1 = (0,−2, 1), x2 = (1,−2, 0), x3 =
(1, 2, 1).

17

[
5 1
4 2

] [
1
1

]
=

[
6
6

]
soλ1 = 6. Thenλ2 = 1 to make trace= 5 + 2 = 6 + 1.

[
a b
c d

] [
1
1

]
=

[
a+ b
c+ d

]
= (a+ b)

[
1
1

]
so

[
1
1

]
is an eigenvector.

The other eigenvalue isd− b to make trace= a+ d = (a+ b) + (d− b).

18 These3 matrices haveλ = 4 and5, trace9, det 20:

[
4 0
0 5

]
,

[
3 2

−1 6

]
,

[
2 2

−3 7

]
.

19 (a) u is a basis for the nullspace,v andw give a basis for the column space
(b) x = (0, 1

3 ,
1
5 ) is a particular solution. Add anycu from the nullspace

(c) If Ax = u had a solution,u would be in the column space: wrong dimension 3.

20 (a) A =

[
0 −1

−28 11

]
has trace11 and determinant28, soλ = 4 and7.

(b) A =

[
0 1

−λ1λ2 λ1 + λ2

]
has traceλ1 + λ2 and determinantλ1λ2 so its eigenval-

ues must beλ1 andλ2. This is a typicalcompanion matrix.

21 (A− λI) has the same determinant as(A− λI)T

because every square matrix hasdetM = detMT.

[
1 0
1 0

]
and

[
1 1
0 0

]
havedifferent
eigenvectors.

22 λ = 1 (for Markov), 0 (for singular),− 1
2 (so sum of eigenvalues= trace= 1

2 ).

23 If you known independent eigenvectors and their eigenvalues, you know the matrixA.
In Section 6.2, thex’s andλ’s go intoV andΛ, and the matrix must beA = V ΛV −1.
In this section, Problem 23 suggests thatAv = Bv for every vectorv (which proves
A = B) because

v = c1x1 + · · ·+ cnxn Av = c1λ1x1 + · · ·+ cnλnxn = Bv.

24 The block matrix hasλ = 1, 2 fromB and5, 7 fromD. All entries ofC are multiplied
by zeros indet(A− λI), soC has no effect on the eigenvalues.
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25 A has rank 1 with eigenvalues0, 0, 0, 4 (the 4 comes from the trace ofA). C has rank
2 (ensuring two zero eigenvalues) and(1, 1, 1, 1) is an eigenvector withλ = 2. With
trace 4, the other eigenvalue is alsoλ = 2, and its eigenvector is(1,−1, 1,−1).

26 B hasλ = −1, −1, −1, 3 andC hasλ = 1, 1, 1,−3. Both havedet = −3.

27 Triangular matrix:λ(A) = 1, 4, 6; λ(B) = 2,
√
3, −

√
3; Rank-1 matrix:λ(C) =

0, 0, 6.

28 det

[
0− λ 1 0
0 0− λ 1
1 0 0− λ

]
= −λ3 + 1 = 0 for λ = 1, e2πi/3, e−2πi/3.

Those complex eigenvaluesλ2, λ3 arecos 120◦ ± i sin 120◦ = 1
2 ± i

√
3
2 .

The trace ofP is λ1 + λ2 + λ3 = 0.

det

[
0− λ 0 1
0 1− λ 0
1 0 0− λ

]
= −λ3 + λ2 + λ − 1 = 0 for λ = 1, 1,−1. The trace is

1 + 1− 1 = 1. Three eigenvectors are(1, 1, 1) and(1, 0, 1) and(1, 0,−1). SinceP is
symmetric we could have chosen orthogonal eigenvectors—change the first to(0, 1, 0).

29 Setλ = 0 in det(A− λI) = (λ1 − λ) . . . (λn − λ) to finddetA = (λ1)(λ2) · · · (λn).

30 λ1 = 1
2 (a + d +

√
(a− d)2 + 4bc) andλ2 = 1

2 (a + d −
√

) add toa + d.
If A hasλ1 = 3 andλ2 = 4 then det(A− λI) = (λ − 3)(λ− 4) = λ2 − 7λ+ 12.

Problem Set 6.2, page 345

Questions 1–7 are about the eigenvalue and eigenvector matricesΛ and V .

1 (a) Factor these two matrices intoA = V ΛV −1 :

A =

[
1 2
0 3

]
and A =

[
1 1
3 3

]
.

(b) If A = V ΛV −1 thenA3 = (V )(Λ3)(V −1) andA−1 = (V )(Λ−1)(V −1).
[
1 2
0 3

]
=

[
1 1
0 1

] [
1 0
0 3

] [
1 −1
0 1

]
;

[
1 1
3 3

]
=

[
1 1

−1 3

] [
0 0
0 4

] [ 3
4 − 1

4
1
4

1
4

]
.

2 If A has λ1 = 2 with eigenvectorx1 =
[
1
0

]
and λ2 = 5 with x2 =

[
1
1

]
,

useV ΛV −1 to findA. No other matrix has the sameλ’s andx’s.
Put the eigenvectors inV
and eigenvalues inΛ. A = V ΛS−1 =

[
1 1
0 1

] [
2 0
0 5

] [
1 −1
0 1

]
=

[
2 3
0 5

]
.

3 SupposeA = V ΛV −1. What is the eigenvalue matrix forA + 2I ? What is the
eigenvector matrix ? Check thatA+ 2I = (V )(Λ + 2I)(V )−1.

If A = V ΛV −1 then the eigenvalue matrix forA + 2I is Λ + 2I and the eigenvector
matrix is stillV . V (Λ + 2I)V −1 = V ΛV −1 + V (2I)V −1 = A+ 2I.

4 True or false : If the columns ofV (eigenvectors ofA) are linearly independent, then
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(a) A is invertible (b) A is diagonalizable

(c) V is invertible (d) V is diagonalizable.

(a) False: don’t knowλ’s (b) True (c) True (d) False: need eigenvectors ofV

5 If the eigenvectors ofA are the columns ofI, thenA is a matrix. If the eigen-
vector matrixV is triangular, thenV −1 is triangular. Prove thatA is also triangular.

With V = I, A = V ΛV −1 = Λ is a diagonal matrix. IfV is triangular, thenV −1 is
triangular, soV ΛV −1 is also triangular.

6 Describe all matricesV that diagonalize this matrixA (find all eigenvectors) :

A =

[
4 0
1 2

]
.

Then describe all matrices that diagonalizeA−1.

The columns ofV are nonzero multiples of(2,1) and(0,1): in either order. The same
matricesV will diagonizeA−1.

7 Write down the most general matrix that has eigenvectors
[
1
1

]
and

[
1

−1

]
.

A = V ΛV −1 =

[
1 1
1 −1

] [
λ1

λ2

] [
1 1
1 −1

]
/2 =

[
λ1 + λ2 λ1 − λ2

λ1 − λ2 λ1 + λ2

]
/2 =

[
a b
b a

]
for anya andb.

Questions 8–10 are about Fibonacci and Gibonacci numbers.

8 Diagonalize the Fibonacci matrix by completingV −1 :
[

1 1
1 0

]
=

[
λ1 λ2

1 1

] [
λ1 0
0 λ2

] [ ]
.

Do the multiplicationV ΛkV −1
[
1
0

]
to find its second component. This is thekth Fi-

bonacci numberFk =
(
λk
1 − λk

2

)/(
λ1 − λ2

)
.

A = V ΛV −1 =

[
1 1
1 0

]
=

1

λ1 − λ2

[
λ1 λ2

1 1

] [
λ1 0
0 λ2

] [
1 −λ2

−1 λ1

]
. V ΛkV −1 =

1

λ1 − λ2

[
λ1 λ2

1 1

] [
λk
1 0
0 λk

2

] [
1 −λ2

−1 λ1

] [
1
0

]
=

[
2nd componentis Fk

(λk
1 − λk

2)/(λ1 − λ2)

]
.

9 SupposeGk+2 is theaverageof the two previous numbersGk+1 andGk :

Gk+2 = 1
2Gk+1 +

1
2Gk

Gk+1 = Gk+1
is

[
Gk+2

Gk+1

]
=

[
A

] [
Gk+1

Gk

]
.

(a) FindA and its eigenvalues and eigenvectors.

(b) Find the limit asn → ∞ of the matricesAn = V ΛnV −1.

(c) If G0 = 0 andG1 = 1 show that the Gibonacci numbers approach2
3 .
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(a) A =

[
.5 .5
1 0

]
hasλ1 = 1, λ2 = − 1

2 with x1 = (1, 1), x2 = (1,−2)

(b) An =

[
1 1
1 −2

] [
1n 0
0 (−.5)n

][ 2
3

1
3

1
3 − 1

3

]
→ A∞ =

[
2
3

1
3

2
3

1
3

]

10 Prove that every third Fibonacci number in0, 1, 1, 2, 3, . . . is even.

The ruleFk+2 = Fk+1 + Fk produces the pattern: even, odd, odd, even, odd, odd,. . .

Questions 11–14 are about diagonalizability.

11 True or false : If the eigenvalues ofA are2, 2, 5 then the matrix is certainly

(a) invertible (b) diagonalizable (c) not diagonalizable.

(a) True (no zero eigenvalues) (b)False(repeatedλ = 2 may have only one line of
eigenvectors) (c)False(repeatedλ may have a full set of eigenvectors)

12 True or false : If the only eigenvectors ofA are multiples of(1, 4) thenA has

(a) no inverse (b) a repeated eigenvalue (c) no diagonalizationV ΛV −1.

(a) False: don’t knowλ (b) True: an eigenvector is missing (c) True.

13 Complete these matrices so thatdetA = 25. Then check thatλ = 5 is repeated—
the trace is10 so the determinant ofA − λI is (λ − 5)2. Find an eigenvector with
Ax = 5x. These matrices will not be diagonalizable because there isno second line of
eigenvectors.

A =

[
8

2

]
and A =

[
9 4

1

]
and A =

[
10 5
−5

]

A =

[
8 3

−3 2

]
(or other),A =

[
9 4

−4 1

]
, A =

[
10 5
−5 0

]
;

only eigenvectors
arex = (c,−c).

14 The matrixA =
[
3 1
0 3

]
is not diagonalizable because the rank ofA − 3I is .

Change one entry to makeA diagonalizable. Which entries could you change ?

The rank ofA − 3I is r = 1. Changing any entry excepta12 = 1 makesA
diagonalizable (A will have unequal eigenvalues, so eigenvectors are independent.)

Questions 15–19 are about powers of matrices.

15 Ak = V ΛkV −1 approaches the zero matrix ask → ∞ if and only if everyλ has
absolute value less than . Which of these matrices hasAk → 0?

A1 =

[
.6 .9
.4 .1

]
and A2 =

[
.6 .9
.1 .6

]
.

Ak = V ΛkV −1 approaches zeroif and only if every |λ| < 1; Ak
1 → A∞

1 , Ak
2 → 0.
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16 (Recommended) FindΛ andV to diagonalizeA1 in Problem 15. What is the limit
of Λk ask → ∞ ? What is the limit ofV ΛkV −1 ? In the columns of this limiting
matrix you see the .

Λ =

[
1 0

0 .2

]
andV =

[
1 1

1 −1

]
; Λk →

[
1 0

0 0

]
andV ΛkV −1 →

[
1
2

1
2

1
2

1
2

]
:

steady
state .

17 FindΛ andV to diagonalizeA2 in Problem 15. What is(A2)
10u0 for theseu0 ?

u0 =

[
3
1

]
and u0 =

[
3

−1

]
and u0 =

[
6
0

]
.

Λ =

[
.9 0
0 .3

]
, S =

[
3 −3
1 1

]
; A10

2

[
3
1

]
= (.9)10

[
3
1

]
, A10

2

[
3

−1

]
= (.3)10

[
3

−1

]
,

A10
2

[
6
0

]
= (.9)10

[
3
1

]
+ (.3)10

[
3

−1

]
because

[
6
0

]
is the sum of

[
3
1

]
+

[
3

−1

]
.

18 DiagonalizeA and computeV ΛkV −1 to prove this formula forAk :

A =

[
2 −1

−1 2

]
has Ak =

1

2

[
1 + 3k 1− 3k

1− 3k 1 + 3k

]
.

[
2 −1

−1 2

]
=

1

2

[
1 −1
1 1

] [
1 0
0 3

] [
1 1

−1 1

]
and Ak =

1

2

[
1 −1
1 1

] [
1 0
0 3k

]

[
1 1

−1 1

]
. Multiply those last three matrices to getAk =

1

2

[
1 + 3k 1− 3k

1− 3k 1 + 3k

]
.

19 DiagonalizeB and computeV ΛkV −1 to prove this formula forBk :

B =

[
5 1
0 4

]
has Bk =

[
5k 5k − 4k

0 4k

]
.

Bk =

[
1 1
0 −1

] [
5 0
0 4

]k [
1 1
0 −1

]
=

[
5k 5k − 4k

0 4k

]
.

20 SupposeA = V ΛV −1. Take determinants to provedetA = detΛ = λ1λ2 · · ·λn.
This quick proof only works whenA can be .

detA = (detV )(det Λ)(detV −1) = detΛ = λ1 · · ·λn. This proof works whenA is
diagonalizable.

21 Show that traceV T = traceTV , by adding the diagonal entries ofV T andTV :

V =

[
a b
c d

]
and T =

[
q r
s t

]
.

ChooseT asΛV −1. ThenV ΛV −1 has the same trace asΛV −1V = Λ. The trace ofA
equals the trace ofΛ, which is certainly the sum of the eigenvalues.

traceV T = (aq + bs) + (cr + dt) is equal to(qa + rc) + (sb + td) = traceTV .
Diagonalizable trace ofV ΛV −1 = trace of(ΛV −1)V = trace ofΛ: sum of theλ’s.
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22 AB − BA = I is impossible since the left side has trace= . But find an
elimination matrix so thatA = E andB = ET give

AB −BA =

[
−1 0
0 1

]
which has trace zero.

AB − BA = I is impossible since traceAB − traceBA = zero 6= trace I.
AB −BA = C is possible when trace(C) = 0.

E =

[
1 0
1 1

]
hasEET − ETE =

[
−1 0
0 1

]
.

23 If A = V ΛV −1, diagonalize the block matrixB =
[

A 0
0 2A

]
. Find its eigenvalue and

eigenvector (block) matrices.

If A = V ΛV −1 thenB =

[
A 0
0 2A

]
=

[
V 0
0 V

] [
Λ 0
0 2Λ

] [
V −1 0
0 V −1

]
. SoB

has the additional eigenvalues2λ1, . . . , 2λn.
24 Consider all 4 by 4 matricesA that are diagonalized by the same fixed eigenvector

matrix V . Show that theA’s form a subspace(cA andA1 + A2 have this sameV ).
What is this subspace whenV = I ? What is its dimension ?

TheA’s form a subspace sincecA andA1 + A2 all have the sameV . WhenV = I
theA’s with those eigenvectors give the subspace of diagonal matrices. Dimension 4.

25 SupposeA2 = A. On the left sideA multiplies each column ofA. Which of our four
subspaces contains eigenvectors withλ = 1? Which subspace contains eigenvectors
with λ = 0? From the dimensions of those subspaces,A has a full set of independent
eigenvectors. So every matrix withA2 = A can be diagonalized.

If A has columnsx1, . . . ,xn then column by column,A2 = A means everyAxi = xi.
All vectors in the column space (combinations of those columnsxi) are eigenvectors
with λ = 1. Always the nullspace hasλ = 0 (A might have dependent columns, so
there could be less thann eigenvectors withλ = 1). Dimensions of those spaces add
to n by the Fundamental Theorem, soA is diagonalizable(n independent eigenvectors
altogether).

26 (Recommended) SupposeAx = λx. If λ = 0 thenx is in the nullspace. Ifλ 6= 0 then
x is in the column space. Those spaces have dimensions(n − r) + r = n. So why
doesn’t every square matrix haven linearly independent eigenvectors?

Two problems: The nullspace and column space can overlap, sox could be in both.
There may not ber independent eigenvectors in the column space.

27 The eigenvalues ofA are 1 and 9, and the eigenvalues ofB are−1 and 9 :

A =

[
5 4
4 5

]
and B =

[
4 5
5 4

]
.

Find a matrix square root ofA from R = V
√
ΛV −1. Why is there no real matrix

square root ofB ?

R=V
√
ΛV −1=

[
2 1
1 2

]
hasR2=A.

√
B needsλ =

√
9 and

√
−1, trace is not real.

Note that

[
−1 0
0 −1

]
can have

√
−1 = i and−i, trace0, real square root

[
0 1

−1 0

]
.
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28 The powersAk approach zero if all|λi| < 1 and they blow up if any|λi| > 1.
Peter Lax gives these striking examples in his bookLinear Algebra:

A =

[
3 2
1 4

]
B =

[
3 2

−5 −3

]
C =

[
5 7

−3 −4

]
D =

[
5 6.9

−3 −4

]

‖A1024‖ > 10700 B1024 = I C1024 = −C ‖D1024‖ < 10−78

Find the eigenvaluesλ = eiθ of B andC to showB4 = I andC3 = −I.

B hasλ = i and−i, soB4 hasλ4 = 1 and 1 andB4 = I. C hasλ = (1 ±
√
3i)/2.

This isexp(±πi/3) soλ3 = −1 and−1. ThenC3 = −I andC1024 = −C.

29 If A andB have the sameλ’s with the same full set of independent eigenvectors,
their factorizations into are the same. SoA = B.

The factorizations ofA andB into V ΛV −1 are the same. SoA = B. (This is
the same as Problem 6.1.25, expressed in matrix form.)

30 Suppose the sameV diagonalizes bothA andB. They have the same eigenvectors in
A = V Λ1V

−1 andB = V Λ2V
−1. Prove thatAB = BA.

A = V Λ1V
−1 andB = V Λ2V

−1. Diagonal matrices always giveΛ1Λ2 = Λ2Λ1.
ThenAB = BA from V Λ1V

−1V Λ2V
−1 = VΛ1Λ2V

−1 = VΛ2Λ1V
−1. This is

V Λ2V
−1V Λ1V

−1 = BA.

31 (a) If A =
[
a b
0 d

]
then the determinant ofA − λI is (λ − a)(λ − d). Check the

“Cayley-Hamilton Theorem” that(A− aI)(A− dI) = zero matrix.

(b) Test the Cayley-Hamilton Theorem on Fibonacci’sA =
[
1 1
1 0

]
. The theorem

predicts thatA2 −A− I = 0, since the polynomialdet(A− λI) is λ2 − λ− 1.

(a) A =

[
a b
0 d

]
hasλ = a andλ = d: (A−aI)(A−dI) =

[
0 b
0 d− a

] [
a− d b
0 0

]

=

[
0 0
0 0

]
. (b) A =

[
1 1
1 0

]
hasA2 =

[
2 1
1 1

]
andA2 − A − I = 0 is true,

matchingλ2 − λ− 1 = 0 as the Cayley-Hamilton Theorem predicts.

32 SubstituteA = V ΛV −1 into the product(A−λ1I)(A−λ2I) · · · (A−λnI) and explain
why this produces the zero matrix. We are substituting the matrix A for the numberλ
in the polynomialp(λ) = det(A− λI). TheCayley-Hamilton Theorem says that this
product is alwaysp(A) = zero matrix, even ifA is not diagonalizable.

WhenA = V ΛV −1 is diagonalizable, the matrixA−λjI = V (Λ−λjI)V
−1 will have

0 in thej, j diagonal entry ofΛ−λjI. In the productp(A) = (A−λ1I) · · · (A−λnI),
each insideV −1 cancelsV . This leavesV times (product of diagonal matricesΛ−λjI)
timesV −1. That product is the zero matrix because the factors producea zero in each
diagonal position. Thenp(A) = zero matrix, which is the Cayley-Hamilton Theorem.
(If A is not diagonalizable, one proof is to take a sequence of diagonalizable matrices
approachingA.)

Comment I have also seen the following reasoning but I am not convinced:
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Apply the formulaACT = (detA)I from Section 5.3 toA − λI with variableλ. Its
cofactor matrixC will be a polynomial inλ, since cofactors are determinants:

(A− λI) cof (A− λI)T = det(A− λI)I = p(λ)I.

“For fixedA, this is an identity between two matrix polynomials.” Setλ = A to find
the zero matrix on the left, sop(A) = zero matrix on the right—which is the Cayley-
Hamilton Theorem.

I am not certain about the key step of substituting a matrix for λ. If other matrices
B are substituted, does the identity remain true? IfAB 6= BA, even the order of
multiplication seems unclear. . .

Challenge Problems

33 Thenth power of rotation throughθ is rotation throughnθ :

An =

[
cos θ − sin θ
sin θ cos θ

]n
=

[
cosnθ − sinnθ
sinnθ cosnθ

]
.

Prove that neat formula by diagonalizingA = V ΛV −1. The eigenvectors (columns of
V ) are(1, i) and(i, 1). You need to know Euler’s formulaeiθ = cos θ + i sin θ.

The eigenvalues ofA =

[
cos θ − sin θ
sin θ cos θ

]
areλ = eiθ ande−iθ (trace2 cos θ and

det = 1). Their eigenvectors are(1,−i) and(1, i):

An = V ΛnV −1 =

[
1 1

−i i

] [
einθ

e−inθ

] [
i −1
i 1

]
/2i

=

[
(einθ + e−inθ)/2 · · ·
(einθ − e−inθ)/2i · · ·

]
=

[
cosnθ − sinnθ
sinnθ cosnθ

]
.

Geometrically,n rotations byθ give one rotation bynθ.

34 The transpose ofA = V ΛV −1 isAT = (V −1)TΛV T. The eigenvectors inATy = λy
are the columns of that matrix(V −1)T. They are often calledleft eigenvectors.

How do you multiply three matricesV ΛV −1 to find this formula forA?

Sum of rank-1 matrices A = V ΛV −1 = λ1x1y
T
1 + · · ·+ λnxny

T
n .

Columns ofV times rows ofΛV −1 will give r rank-1 matrices(r = rank ofA).

35 The inverse ofA = eye(n)+ones(n) isA−1 = eye(n)+C ∗ones(n). Multiply AA−1

to find that numberC (depending onn).

Note thatones(n) ∗ ones(n) = n ∗ ones(n). This leads toC = 1/(n+ 1).

AA−1 = (eye(n) + ones(n)) ∗ (eye(n) + C ∗ ones(n))

= eye(n) + (1 + C + Cn) ∗ ones(n) = eye(n).
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Problem Set 6.3, page 357

1 Find all solutionsy = c1e
λ1tx1 + c2e

λ2tx2 to y′ =

[
3 1
3 5

]
y. Which solution

starts fromy(0) = c1x1 + c2x2 = (2, 2)?

The eigenvalues come fromdet(A− λI) = 0. This is

λ2 − 8λ+ 12 = (λ− 2)(λ− 6) = 0 soλ = 2, 6

Eigenvectors :(A−2I)x1 = 0 and(A−6I)x2 = 0 givex1 = (1,−1) andx2 = (1, 3)

Solutions arey(t) = c1e
2t

[
1

−1

]
+ c2e

−6t

[
1
3

]

Constantsc1, c2 come from

[
1 1

−1 3

][
c1
c2

]
= y(0) =

[
2
2

]
. Thenc1 = c2 = 1.
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2 Find two solutions of the formy = eλtx to y′ =

[
3 10
2 4

]
y.

The eigenvalues come fromλ2 − 7λ − 8 = 0. Factor into(λ − 8)(λ + 1) to see
λ = 8, and−1.

(A− 8I)x1 =

[
−5 10
2 −1

]
x1 = 0 gives x1 =

[
2

−1

]

(A+ I)x2 =

[
−4 10
2 −5

]
x2 = 0 gives x2 =

[
5

−2

]

The two solutions arey(t) = e8tx1 ande−tx2

3 If a 6= d, find the eigenvalues and eigenvectors and the complete solution to y′ =Ay.
This equation is stable whena andd are .

y′ =

[
a b
0 d

]
y.

The eigenvalues areλ = a andλ = d. The eigenvectors come from

(A− aI)x1 =

[
0 b
0 d− a

]
x1 = 0. x1 =

[
1
0

]

(A− dI)x2 =

[
a− d b
0 0

]
x2 = 0. x2 =

[
b

d− a

]

Two solutions arey = eatx1 andy = edtx2. Stability fornegativea andd.

4 If a 6= −b, find the solutionseλ1tx1 and eλ2tx2 to y′ = Ay :

A =

[
a b
a b

]
. Why is y′ = Ay not stable?

A is singular soλ1 = 0. Trace isa+ b soλ2 = a+ b. (A− 0I)x1 = 0 gives

x1 =

[
b

−a

]
(A− (a+ b)I)x2 =

[
−b b
a −a

]
x2 = 0 givesx2 =

[
1
1

]
.

The system is not stable becauseλ = 0 is an eigenvalue. Ifλ2 = a+ b is negative, the
system is “neutral” and the solution approaches a steady state (a multiple ofx1).

5 Find the eigenvaluesλ1, λ2, λ3 and the eigenvectorsx1, x2, x3 of A. Write
y(0) = (0, 1, 0) as a combinationc1x1 + c2x2 + c3x3 = V c and solvey′ = Ay.
What is the limit ofy(t) ast → ∞ (the steady state) ?Steady states come fromλ = 0.

A =

[ −1 1 0
1 −2 1
0 1 −1

]
.

Calculation givesdet(A− λI) = −(λ+ 1)λ(λ + 3) and eigenvaluesλ = 0,−1,−3.
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λ=0 has eigenvectorx1=

[
1
1
1

]
λ=−1 has x2=

[
1
0

−1

]
λ=−3 has x3=

[
1

−2
1

]

Notice: Those eigenvectors are orthogonal (becauseA is symmetric). Theny(0) is

(0, 1, 0) =
1

3
(x1 − x3) soy(t) =

1

3
e0tx1 −

1

3
e−3tx2 approachesy(∞) =

1

3

[
1
1
1

]
.

6 The simplest2 by 2 matrix without two independent eigenvectors hasλ = 0, 0 :

[
y1
y2

]′
= Ay =

[
0 1
0 0

] [
y1
y2

]
has a first solution

[
y1
y2

]
= e0t

[
1
0

]
.

Find a second solution to these equationsy1
′ = y2 andy2′ = 0. That second solution

starts witht times the first solution to givey1 = t. What isy2 ?

Note A complete discussion ofy′ = Ay for all cases of repeatedλ’s would involve
theJordan formof A : too technical. Section 6.4 shows that a triangular form is suffi-
cient, as Problems 6 and 8 confirm. We can solve fory2 and theny1.

The first solution toy
′

1 = y2 andy
′

2 = 0 is (y1(t), y2(t)) = (1, 0) = eigenvector.

A second solution has(y1, y2) = (t, 1). The factort appears when there is nox2.

7 Find twoλ’s andx’s so thaty = eλtx solves

dy

dt
=

[
4 3
0 1

]
y.

What combinationy = c1e
λ1tx1 + c2e

λ2tx2 starts fromy(0) = (5,−2)?

y1 = e4t
[
1
0

]
, y2 = et

[
1

−1

]
. If y(0) =

[
5

−2

]
, theny(t) = 3e4t

[
1
0

]
+ 2et

[
1

−1

]
.

8 Solve Problem 7 fory = (y, z) by back substitution,z beforey :

Solve
dz

dt
= z from z(0) = −2. Then solve

dy

dt
= 4y + 3z from y(0) = 5.

The solution fory will be a combination ofe4t andet. λ = 4 and1. z(t) = −2et.

Thendy/dt = 4y − 6et with y(0) = 5 givesy(t) = 3e4t + 2et as in Problem 7.
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9 (a) If every column ofA adds to zero, why isλ = 0 an eigenvalue?

(b) With negative diagonal and positive off-diagonal adding to zero,y ′ = Ay
will be a “continuous” Markov equation. Find the eigenvalues and eigenvectors,
and thesteady stateast → ∞ :

Solve
dy

dt
=

[
−2 3
2 −3

]
y with y(0) =

[
4
1

]
. What isy(∞) ?

(a) If every column ofA adds to zero, this means that the rows add to the zero row. So
the rows are dependent, andA is singular, andλ = 0 is an eigenvalue.

(b) The eigenvalues ofA =

[
−2 3
2 −3

]
areλ1 = 0 with eigenvectorx1 = (3, 2) and

λ2 = −5 (to give trace= −5) with x2 = (1,−1). Then the usual 3 steps:

1. Writey(0) =

[
4
1

]
as

[
3
2

]
+

[
1

−1

]
= x1 + x2

2. Follow those eigenvectors bye0tx1 ande−5tx2

3. The solutiony(t) = x1 + e−5tx2 has steady statex1 = (3, 2).

10 A door is opened between rooms that holdv(0) = 30 people andw(0) = 10 people.
The movement between rooms is proportional to the differencev − w:

dv

dt
= w − v and

dw

dt
= v − w.

Show that the totalv + w is constant (40 people). Find the matrix indy/dt = Ay and
its eigenvalues and eigenvectors. What arev andw at t = 1 andt = ∞?

d(v+w)/dt = (w− v)+ (v−w) = 0, so the totalv+w is constant.A =

[
−1 1
1 −1

]

has
λ1 = 0
λ2 = −2

with x1 =

[
1
1

]
, x2 =

[
1

−1

]
;

v(1) = 20 + 10e−2

w(1) = 20− 10e−2
v(∞) = 20
w(∞) = 20

11 Reverse the diffusion of people in Problem 10 todz/dt = −Az :

dv

dt
= v − w and

dw

dt
= w − v.

The totalv +w still remains constant. How are theλ’s changed now thatA is changed
to −A? But show thatv(t) grows to infinity fromv(0) = 30.

d

dt

[
v
w

]
=

[
1 −1

−1 1

]
hasλ = 0 and+2: v(t) = 20 + 10e2t → ∞ ast → ∞.

12 A has real eigenvalues butB has complex eigenvalues:

A =

[
a 1
1 a

]
B =

[
b −1
1 b

]
(a andb are real)

Find the stability conditions ona and b so that all solutions ofdy/dt = Ay
anddz/dt = Bz approach zero ast → ∞.
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A =

[
a 1
1 a

]
has real eigenvaluesa+1 anda−1. These are both negative ifa < −1,

and the solutions ofy′ = Ay approach zero.B =

[
b −1
1 b

]
has complex eigenvalues

b + i andb − i. These have negative real parts ifb < 0, and all solutions ofz′ = Bz
approach zero.

13 SupposeP is the projection matrix onto the45◦ line y = x in R2. Its eigenvalues are1
and0 with eigenvectors(1, 1) and(1,−1). If dy/dt = −Py (notice minus sign) can
you find the limit ofy(t) at t = ∞ starting fromy(0) = (3, 1)?

A projection matrix has eigenvaluesλ = 1 andλ = 0. EigenvectorsPx = x fill
the subspace thatP projects onto: herex = (1, 1). EigenvectorsPx = 0 fill the
perpendicular subspace: herex = (1,−1). For the solution toy′ = −Py,

y(0) =

[
3
1

]
=

[
2
2

]
+

[
1

−1

]
y(t) = e−t

[
2
2

]
+ e0t

[
1

−1

]
approaches

[
1

−1

]
.

14 The rabbit population shows fast growth (from6r) but loss to wolves (from−2w).
The wolf population always grows in this model (−w2 would control wolves):

dr

dt
= 6r − 2w and

dw

dt
= 2r + w.

Find the eigenvalues and eigenvectors. Ifr(0) = w(0) = 30 what are the populations
at timet? After a long time, what is the ratio of rabbits to wolves?
[
6 −2
2 1

]
hasλ1 = 5, x1 =

[
2
1

]
, λ2 = 2, x2 =

[
1
2

]
; rabbitsr(t) = 20e5t + 10e2t,

w(t) = 10e5t+20e2t. The ratio of rabbits to wolves approaches20/10; e5t dominates.

15 (a) Write(4, 0) as a combinationc1x1 + c2x2 of these two eigenvectors ofA:
[

0 1
−1 0

] [
1
i

]
= i

[
1
i

] [
0 1

−1 0

] [
1

−i

]
= −i

[
1

−i

]
.

(b) The solution tody/dt = Ay starting from(4, 0) is c1eitx1+c2e
−itx2. Substitute

eit = cos t+ i sin t ande−it = cos t− i sin t to findy(t).

(a)

[
4
0

]
= 2

[
1
i

]
+2

[
1

−i

]
. (b) Theny(t) = 2eit

[
1
i

]
+2e−it

[
1

−i

]
=

[
4 cos t
4 sin t

]
.

Questions 16–19 reduce second-order equations to first-order systems for(y, y′).

16 Find A to change the scalar equationy ′′ = 5y ′ + 4y into a vector equation fory =
(y, y ′):

dy

dt
=

[
y ′

y ′′

]
=

[ ] [
y
y ′

]
= Ay.

What are the eigenvalues ofA? Find them also by substitutingy = eλt into y′′ =
5y′ + 4y.
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d

dt

[
y
y′

]
=

[
y′

y′′

]
=

[
0 1
4 5

] [
y
y′

]
. A =

[
0 1
4 5

]
hasdet(A−λI) = λ2−5λ−4 = 0.

Directly substitutingy = eλt into y′′ = 5y′ + 4y also givesλ2 = 5λ+ 4 and the same
two values ofλ. Those values areλ = 1

2
(5 ±

√
41) by the quadratic formula.

17 Substitutey = eλt into y′′ = 6y′ − 9y to show thatλ = 3 is a repeated root. This is
trouble; we need a second solution aftere3t. The matrix equation is

d

dt

[
y
y ′

]
=

[
0 1

−9 6

] [
y
y ′

]
.

Show that this matrix hasλ = 3, 3 and only one line of eigenvectors.Trouble here too.
Show that the second solution toy′′ = 6y′ − 9y is y = te3t.

A =

[
0 1

−9 6

]
has trace 6,det 9,λ = 3 and 3 withoneindependent eigenvector(1, 3).

18 (a) Write down two familiar functions that solve the equationd2y/dt2 = −9y. Which
one starts withy(0) = 3 andy′(0) = 0?

(b) This second-order equationy′′ = −9y produces a vector equationy′ = Ay:

y =

[
y
y ′

]
dy

dt
=

[
y ′

y ′′

]
=

[
0 1

−9 0

] [
y
y ′

]
= Ay.

Findy(t) by using the eigenvalues and eigenvectors ofA: y(0) = (3, 0).

(a) y(t) = cos 3t andsin 3t solvey′′ = −9y. It is 3 cos 3t that starts withy(0) = 3

andy′(0) = 0. (b) A =

[
0 1

−9 0

]
hasdet = 9: λ = 3i and−3i with x = (1, 3i)

and(1,−3i). Theny(t) = 3

2
e3it

[
1
3i

]
+ 3

2
e−3it

[
1

−3i

]
=

[
3 cos 3t

−9 sin 3t

]
.

19 If c is not an eigenvalue ofA, substitutey = ectv and find a particular solution to
dy/dt = Ay − ectb. How does it break down whenc is an eigenvalue ofA?

Substitutingy = ectv gives cectv = Aectv − ectb or (A − cI)v = b or v =
(A−cI)−1b = particular solution. Ifc is an eigenvalue thenA− cI is not invertible.

20 A particular solution tody/dt = Ay − b is yp = A−1b, if A is invertible. The usual
solutions tody/dt = Ay giveyn. Find the complete solutiony = yp + yn:

(a)
dy

dt
= y − 4 (b)

dy

dt
=

[
1 0
1 1

]
y −

[
4
6

]
.

yp = 4 andy(t) = cet + 4; yp =

[
4
2

]
andy(t) = c1e

t

[
1
t

]
+ c2e

t

[
0
1

]
+

[
4
2

]
.

21 Find a matrixA to illustrate each of the unstable regions in the stability picture :

(a) λ1 < 0 andλ2 > 0 (b) λ1 > 0 andλ2 > 0 (c) λ = a± ib with a > 0.
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(a)

[
1 0
0 −1

]
(b)

[
1 0
0 1

]
(c)

[
1 1

−1 1

]
. These show the unstable cases

(a) λ1 < 0 andλ2 > 0 (b) λ1 > 0 andλ2 > 0 (c) λ = a± ib with a > 0

22 Which of these matrices are stable ? Then Reλ < 0, trace< 0, and det> 0.

A1 =

[
−2 −3
−4 −5

]
A2 =

[
−1 −2
−3 −6

]
A3 =

[
−1 2
−3 −6

]
.

A1 is unstable (trace= −7 but determinant= −2; λ1 < 0 butλ2 > 0).

A2 is unstable (singular soλ1 = 0).

A3 is stable (trace= −7 and determinant12; λ1 < 0 andλ2 < 0).
23 For ann by n matrix with trace(A) = T and det(A) = D, find the trace and determi-

nant of−A. Why isz′ = −Az unstable whenevery′ = Ay is stable ?

If trace(A) = T then trace(−A) = −T

If determinant(A) = D then determinant(−A) = (−1)nD

The eigenvalues of−A are−(eigenvalues ofA).
24 (a) For a real3 by 3 matrix with stable eigenvalues (Reλ < 0), show that trace< 0

and det< 0. Either three real negativeλ or elseλ2 = λ1 andλ3 is real.

(b) The trace and determinant of a3 by 3 matrix do not determine all three eigenval-
ues ! Show thatA is unstable even with trace< 0 and determinant< 0 :

A =

[
1 2 3
0 1 4
0 0 −5

]
.

(a) If all three real parts are negative (stability), trace= sum of real parts< 0.

Alsodet=λ1λ2λ3<0 from 3 negativeλ’s or from(a+ib)(a−ib)λ3=(a2+b2)λ3<0.

If a real matrix has a complex eigenvalueλ = a + ib, thenλ = a − ib is also an
eigenvalue. The third eigenvalue must be real to make the trace real.

(b) The triangular matrixA hasλ = 1, 1,−5 even with trace= −3 anddet = −5.
There must be a third test for3 by 3 matrices and that test must fail for this matrix.

25 You might think thaty′ = −A2y would always be stable because you are squaring the

eigenvalues ofA. But why is that equation unstable forA =

[
0 1

−1 0

]
?

This real matrixA hasλ = i and−i. Thenλ2 = −1 and−1. Soy ′ = −A2y has
eigenvalues1 and1 (unstable).

26 Find the three eigenvalues ofA and the three roots ofs3 − s2 + s − 1 = 0 (including
s = 1). The equationy′′′ − y ′′ + y ′ − y = 0 becomes




y
y ′

y ′′



′
=

[
0 1 0
0 0 1
1 −1 1

]


y
y ′

y ′′


 or z ′ = Az.

Each eigenvalueλ has an eigenvectorx = (1, λ, λ2).
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s3 − s2 + s− 1 = 0 comes from substitutingy = est into y ′′′ − y ′′ + y ′ − y = 0.

λ3 − λ2 + λ− 1 = 0 comes from computingdet(A− λI) for the3 by 3 matrix.

One root iss = 1 (andλ = 1). The full cubic polynomial is

s3 − s2 + s− 1 = (s− 1)(s2 + 1) with roots1, i,−i.

Eigenvectors(1, λ, λ2) = (1, 1, 1), (1, i,−1), (1,−i,−1) for this companion matrix.

27 Find the two eigenvalues ofA and the double root ofs2 + 6s+ 9 = 0 :

y ′′ + 6y ′ + 9y = 0 becomes

[
y
y ′

]′
=

[
0 1
9 6

] [
y
y ′

]
or z ′ = Az.

The repeated eigenvalue gives only one solutionz = eλtx. Find a second solutionz
from the second solutiony = teλt.

The matrix hasdet(A − λI) = λ2 + 6λ + 9. This is (λ + 3)2 so eigenvalues
λ = rootss = −3,−3. The two solutions arey = e−3t andy = te−3t. Those

translate toz =

[
y
y ′

]
= e−3t

[
1

−3

]
andz =

[
y
y ′

]
= e−3t

[
t

1− 3t

]

28 Explain why a 3 by 3 companion matrix has eigenvectorsx = (1,λ,λ2).

First Way: If the first component isx1 = 1, the first row ofAx = λx gives the
second componentx2 = . Then the second row ofAx = λx gives the third
componentx3 = λ2.

Second Way: y ′ = Ay starts withy ′

1 = y2 and y ′

2 = y3. y = eλtx solves
those equations. Att = 0 the equations becomeλx1 = x2 and .

Ax =

[
0 1 0
0 0 1

−D −C −B

]


1
λ
λ2


 = λ




1
λ
λ2


 because rows1 and2 are true and

row 3 is −D − Cλ − Bλ2 = λ3. That isλ3 + Bλ2 + Cλ +D = 0 corresponding to
y ′′′ +By ′′ + Cy ′ +Dy = 0.

29 Find A to change the scalar equationy′′ = 5y′ − 4y into a vector equation forz =
(y, y′):

dz

dt
=

[
y′

y′′

]
=

[ ] [
y
y′

]
= Az.

What are the eigenvalues of the companion matrixA? Find them also by substituting
y = eλt into y′′ = 5y′ − 4y.

dz

dt
=

[
y′

y′′

]
=

[
y ′

5y ′ − 4y

]
=

[
0 1

−4 5

] [
y
y′

]
= Az.

The eigenvalues come fromλ2 − 5λ + 4 = 0. Thenλ = 1 and4. Unstable because
y ′′ − 5y ′ + 4y has negative damping.

30 (a) Write down two familiar functions that solve the equationd2y/dt2 = −9y. Which
one starts withy(0) = 3 andy ′(0) = 0?
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(b) This second-order equationy′′ = −9y produces a vector equationz ′ = Az :

z =

[
y
y ′

]
dz

dt
=

[
y ′

y ′′

]
=

[
0 1

−9 0

] [
y
y ′

]
= Az.

Findz(t) by using the eigenvalues and eigenvectors ofA: z(0) = (3, 0).

(a) y1 = cos 3t andy2 = sin 3t and their combinations solvey ′′ = −9y. The initial
conditionsy(0) = 3, y ′(0) = 0 are satisfied byy = 3 cos 3t.

(b) The matrixA hasdet

[
−λ 1
−9 −λ

]
= λ2 +9 = 0 andλ = 3i,−3i. Eigenvectors

(1,3i), (1,−3i).

z(t) = c1e
3it

[
1
3i

]
+ c2e

−3it

[
1

−3i

]
givesc1 + c2 = 3 and3ic1 − 3ic2 = 0 at t = 0.

Thenc1 = c2 =
3

2
gives

[
y
y ′

]
=

3

2
e3it

[
1
3i

]
+
3

2
e−3it

[
1

−3i

]
=

[
3 cos 3t

−9 sin 3t

]
.

31 (a) Change the third order equationy′′′ − 2y′′ − y′ + 2y = 0 to a first order system
z′ = Az for the unknownz = (y, y′, y′′). The companion matrixA is 3 by 3.

(b) Substitutey = eλt and also find det(A− λI). Those lead to the sameλ’s.

(c) One root isλ = 1. Find the other roots and these complete solutions :

y = c1e
λ1t + c2e

λ2t + c3e
λ3t z = C1e

λ1tx1 + C2e
λ2tx2 + C3e

λ3tx3.

(a)z ′ =




y
y ′

y ′′




′

=

[
0 1 0
0 0 1

−2 1 2

]


y
y ′

y ′′


 = Az

(b) The characteristic equation isdet(A− λI) = −(λ3 − 2λ2 − λ+ 2) = 0.

(c) λ = 1 is a root so we can factor out(λ − 1) :

λ3 − 2λ2 −λ+2 = (λ− 1)(λ2 −λ− 2) = (λ− 1)(λ− 2)(λ+1) has roots1,2,−1.

The complete solution isy = c1e
t + c2e

2t + c3e
−t.

This vectorizes intoz = C1e
t

[
1
1
1

]
+ C2e

2t

[
1
2
4

]
+ C3e

−t

[
1

−1
1

]

32 These companion matrices haveλ = 2, 1 andλ = 4, 1. Find their eigenvectors :

A =

[
0 1

−2 3

]
and B =

[
0 1

−4 5

]
Notice trace and determinant !

A hasλ2 − 3λ+2 = 0 = (λ− 2)(λ− 1). λ = 2,1 with eigenvectors

[
1
2

]
and

[
1
1

]
.

B hasλ2− 5λ+4 = 0 = (λ− 4)(λ− 1). λ = 4,1 with eigenvectors

[
1
4

]
and

[
1
1

]
.
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Problem Set 6.4, page 369

1 If Ax = λx, find an eigenvalue and an eigenvector ofeAt and also of−e−At.

If Ax = λx theneAtx = eλtx and−e−Atx = −e−λtx. Use the infinite series :

eAtx = (I + At+ 1
2 (At)

2 + · · · )x
= (I + λt+ 1

2 (λt)
2 + · · · )x = eλtx.

2 (a) From the infinite serieseAt = I +At+ · · · show that its derivative isAeAt.

(b) The series foreAt ends quickly ifA =

[
0 1
0 0

]
becauseA2 =

[
0 0
0 0

]
.

FindeAt and take its derivative (which should agree withAeAt).

(a) The time derivative of the matrixeAt isAeAt :
d
dt (I +At+ 1

2 (At)
2 + 1

6 (At)
3 + · · · ) = A+A2t+ 1

2A
3t2 + · · · ) = AeAt.

(b) If A =

[
0 1
0 0

]
thenA2 = 0 andeAt = I +At =

[
1 t
0 1

]
.

The derivative ofeAt =

[
1 t
0 1

]
is

[
0 1
0 0

]
which agrees withAeAt.

This derivative also agrees withA itself but that is an accident.

3 ForA =

[
1 1
0 2

]
with eigenvectors inV =

[
1 1
0 1

]
, computeeAt = V eΛtV −1.

eAt = V eΛtV −1 =

[
1 1
0 1

] [
et

e2t

] [
1 −1
0 1

]
=

[
et e2t − et

0 e2t

]
.

CheckeAt = I at t = 0.
4 Why ise (A+ 3I)t equal toeAt multiplied bye3t ?

If AB = BA thene(A+B)t = eAteBt. (This usually fails ifAB 6= BA.)

HereB = 3I always givesAB = BA soe(A+3I)t = eAte3It = eAte3t is true.

5 Why iseA
−1

not the inverse ofeA ? What is the correct inverse ofeA ?

The correct inverse ofeA is e−A. In generaleAteAT = eA(t+T ). Chooset=1, T = −1.

The matrixeA
−1

is a series of powers ofA−1 and(eA)(eA
−1

) = eA+A−1

: not wanted.

6 ComputeAn =

[
1 c
0 0

]n
. Add the series to findeAt =

[
et c(et − 1)
0 1

]
.

Start by assuming

[
1 c
0 0

]n
=

[
1 nc
0 0

]
(certainly true for (n = 1).

Then by induction

[
1 c
0 0

]n+1

=

[
1 c
0 0

] [
1 nc
0 0

]
=

[
1 (n+ 1) c
0 0

]
.

The first equation is true forn = 1. Then the second equation says that every matrix
multiplication addsc to the off-diagonal entry. So the first equation is true forn =
2, 3, 4, . . .
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Now add up the series foreAt :

I+At+ 1
2 (At)

2+· · ·=
[
1 + t+ 1

2 t
2 + · · · 0 + ct+ 1

22ct
2 + · · ·

0 1 + 0 + 0 + · · ·

]
=

[
et c(et − 1)
0 1

]

7 Find eA andeB by using Problem 6 forc = 4 andc = −4. Multiply to show that the
matriceseAeB andeBeA andeA+Bare all different.

A =

[
1 4
0 0

]
B =

[
1 −4
0 0

]
A+B =

[
2 0
0 0

]
.

With t = 1 in Problem 6, A =

[
1 −4
0 0

]
haseA =

[
e −4(e− 1)
0 1

]

B =

[
1 −4
0 0

]
haseB =

[
e −4(e− 1)
0 1

]

TheneAeB =

[
e2 (−4e+ 4)(e − 1)
0 1

]
andeBeA =

[
e2 (4e− 4)(e− 1)
0 1

]
and

eA+B =

[
e2 0
0 1

]
. Those three off-diagonal entries are different becauseAB and

BA have off-diagonals−4 and4.

8 Multiply the first termsI +A+ 1
2A

2 of eA by the first termsI +B + 1
2B

2 of eB. Do
you get the correct first three terms ofeA+B ? Conclusion: eA+B is not always equal
to (eA)(eB). The exponent rule only applies whenAB = BA.
(
I +A+ 1

2A
2
) (

I +B + 1
2B

2
)

= I + A + B + 1
2A

2 + AB + 1
2B

2 + · · ·
The correct three terms ofeA+B are I + A + B + 1

2A
2 + 1

2AB + 1
2BA + 1

2B
2.

ThenAB agrees with12AB + 1
2BA only if AB = BA.

9 Write A =
[
1 4
0 0

]
in the formV ΛV −1. FindeAt from V eΛtV −1.

This is Problem 6 using diagonalizationA = V ΛV −1 by the eigenvector matrixV :

A =

[
1 4
0 0

]
=

[
1 −4
0 1

] [
1 0
0 0

] [
1 4
0 1

]

eAt =

[
1 −4
0 1

] [
et 0
0 1

] [
1 4
0 1

]
=

[
et 4(et − 1)
0 1

]

10 Starting fromy(0) the solution at timet is eAty(0). Go an additional timet
to reacheAt eAty(0). Conclusion:eAt timeseAt equals .

The conclusion is thateAt timeseAt equalse2At. No problem withAB 6= BA because
hereB is the same asA.

11 DiagonalizeA by V and confirm this formula foreAt by usingV eΛtV −1 :

A =

[
2 4
0 3

]
eAt =

[
e2t 4(e3t − e2t)
0 e3t

]
At t = 0 this matrix is .
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A =

[
2 4
0 3

]
=

[
1 4
0 1

] [
2 0
0 3

] [
1 −4
0 1

]
= V ΛV −1

eAt =

[
1 4
0 1

] [
e2t 0
0 e3t

] [
1 −4
0 1

]
=

[
e2t 4(e3t − e2t)
0 e3t

]
= I at t = 0.

12 (a) FindA2 andA3 andAn for A =

[
1 1
0 1

]
with repeated eigenvaluesλ = 1, 1.

(b) Add the infinite series to findeAt. (TheV eΛtV −1 method won’t work.)

(a)A2 =

[
1 2
0 1

]
andA3 =

[
1 3
0 1

]
andAn =

[
1 n
0 1

]
. (b) eAt =

[
1 + t+ 1

2 t
2 + · · · t+ 1

22t
2 + 1

63t
3 + · · ·

0 1 + t+ 1
2 t

2 + · · ·

]
=

[
et t(1 + t+ 1

2 t
2 + · · · )

0 et

]

=

[
et tet

0 et

]

Notice the factort appearing as usual when there are equal roots (or equal eigenvalues).

13 (a) Solvey′ = Ay as a combination of eigenvectors of this matrixA :

y′ =

[
0 1
1 0

]
y with y(0) =

[
3
5

]

(b) Write the equations asy′1 = y2 andy′2 = y1. Find an equation fory′′1 with y2
eliminated. Solve fory1(t) and compare with part (a).

(a)A =

[
0 1
1 0

]
hasλ = 1 with x1 =

[
1
1

]
andλ = −1 with x2 =

[
1

−1

]
.

Theny(0) = 4x1 − x2 andy(t) = 4et
[

1
1

]
− e−t

[
1

−1

]
.

(b) If y ′

1 = y2 andy ′

2 = y1 theny ′′

1 = y ′

2 = y1.

The second order equationy ′′

1 = y1 hasy1 = c1e
t + c2e

−t.

The initial conditions produce the solution of part (a).

14 Similar matricesA andB = V −1AV have thesame eigenvaluesif V is invertible.

Second proof det(V −1AV − λI) = (detV −1) (det(A− λI)) (detV ).

Why is this equation true ? Then both sides are zero when det(A− λI) = 0.

We use the ruledetABC = (detA)(detB)(detC).

HereA = V −1 andC = V have(detA)(detC) = 1.

This only leavesdetB which isdet(A − λI).

Conclusion: V −1AV has the same eigenvalues asA. Similar matrices!
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15 If B is similar to A, the growth rates forz′ = Bz are the same as fory′ = Ay.
That equation converts to the equation forz whenB = V −1AV andz = .

If y ′ = Ay just sety = V z to get V z ′ = AV z which is z ′ = V −1AV z.
Similar matrices come from a change of variable in the differential equation.

16 If Ax = λx 6= 0, what is an eigenvalue and eigenvector of(eAt − I)A−1 ?

The samex is an eigenvector, with eigenvalue in

(eAt − I)A−1x =
1

λ
(eAt − I)x =

eλt − 1

λ
x.

17 The matrixB =
[
0 −4
0 0

]
hasB2 = 0. Find eBt from a (short) infinite series.

Check that the derivative ofeBt isBeBt.

eBt = I +Bt+ 0 =

[
1 −4t
0 1

]
. The derivative is

[
0 −4
0 0

]
.

The derivative is alwaysBeBt; here it also equalsB.

18 Starting fromy(0) = 0, solvey′ = Ay + q as a combination of the eigenvectors.
Suppose the source isq = q1x1 + · · · + qnxn. Solve for one eigenvector at a time,
using the solutiony(t) = (eat − 1)q/a to the scalar equationy′ = ay + q.

Theny(t) = (eAt − I)A−1q is a combination of eigenvectors when allλi 6= 0.

For each eigenvectorx, a solution toy ′ = Ay+x isy(t) =
eλt − 1

λ
x by Problem 16.

Then by linearityy(t) = Σ
eλit − 1

λi
qixi is the solution whenq = q1x1 + · · ·+ qnxn.

This is the same asyp(t) = (eAt − I)A−1q.

19 Solve fory(t) as a combination of the eigenvectorsx1 = (1, 0) andx2 = (1, 1) :

y′ = Ay + q

[
y′1
y′2

]
=

[
1 1
0 2

] [
y1
y2

]
+

[
4
3

]
with

y1(0) = 0
y2(0) = 0

Write q =

[
4
3

]
as a combination3x1+x2 of the eigenvectors ofA. By Problem 18,

yp(t) =
et − 1

1
3x1 +

e2t − 1

2
x2.

20 Solvey′ = Ay =

[
2 3
2 1

]
y in three steps. First find theλ’s andx’s.

(1) Write y(0) = (3, 1) as a combinationc1x1 + c2x2

(2) Multiply c1 andc2 by eλ1t andeλ2t.

(3) Add the solutionsc1eλ1tx1 + c2e
λ2tx2.
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Th eigenvalues come fromdet

[
2− λ 3
2 1− λ

]
= λ2−3λ−4 = (λ−4)(λ+1) = 0.

Thenλ = 4 and−1.

The eigenvectors are found to bex1 =

[
3
2

]
andx2 =

[
1

−1

]
.

Step (1) y(0) =

[
3
1

]
=

4

5

[
3
2

]
+

3

5

[
1

−1

]
.

Step (2) Two solutions
4

5
e4t
[

3
2

]
and

3

5
e−t

[
1

−1

]
.

Step (3) y(t) =
4

5
e4t
[

3
2

]
+

3

5
e−t

[
1

−1

]
.

21 Write five terms of the infinite series foreAt. Take thet derivative of each term. Show
that you have four terms ofAeAt. Conclusion:eAty(0) solvesdy/dt = Ay.

eAt = I +At+
1

2
(At)2 +

1

6
(At)3 +

1

24
(At)4 + · · ·

d

dt
(eAt = A+A2t+

1

2
A3t2 +

1

4
A4t3 + · · · = AeAt.

Problems 22-25 are about time-varying systemsy ′ = A(t)y. Success then failure.

22 Suppose the constant matrixC hasCx = λx, and p(t) is the integral ofa(t).
Substitutey = eλp(t)x to show thatdy/dt = a(t)Cy. Eigenvectors still solve
this special time-varying system : constant matrixC multiplied by the scalara(t).

Here the time-varying coefficient matrix has the special form a(t)C, with the matrixC
constant in time. Its eigenvalues and eigenvectors area(t)λ andx (main point:λ and
x are constant). Then we can solvey ′ = a(t)Cy starting with an eigenvector :

y(t) = e
∫
a(t)λdtx solves

dy

dt
= a(t)λy = a(t)Cy.

A combination of these solutions is also a solution—and can matchy(0).

23 Continuing Problem 22, show from the series forM(t) = ep(t)C thatdM/dt = a(t)CM .
ThenM is the fundamental matrix for the special systemy ′ = a(t)Cy. If a(t) = 1
then its integral isp(t) = t and we recoverM = eCt.

This question puts together the “fundamental matrix”M(t) from Problem 22. Write

p(t) =

∫
a(t) dt.

M = ep(t)C = I + p(t)C +
1

2
p2(t)C2 + · · · and

dp

dt
= a(t) give

dM

dt
= a(t)C + a(t)C2p(t) + · · · = a(t)CM .

24 The integral ofA =

[
1 2t
0 0

]
is P =

[
t t2

0 0

]
. The exponential ofP is

eP =

[
et t(et − 1)
0 1

]
. From the chain rule we might hope that the derivative of
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eP (t) is P ′eP (t) = AeP (t). Compute the derivative ofeP (t) and compare with the
wrong answerAeP (t). (One reason this feels wrong : Writing the chain rule as
(d/dt)eP = ePdP/dt would giveePA instead ofAeP . That is wrong too.)

Now the matrixA(t) does not have the special formA = a(t)C of problems 22–23.
The problem shows that the simple formula doesn’t solvey ′ = A(t)y. We can’t just
integrateA(t) and use the matrixe

∫
A(t)dt.

P =

∫
A(t) dt =

[
t t2

0 0

]
has P 2 =

[
t2 t3

0 0

]
and Pn =

[
tn tn+1

0 0

]

Then
dP

dt
=

[
1 2t
0 0

]
= A andeP = I + P +

1

2
P 2 + · · · =

[
et tet − t
0 1

]
.

But the derivative of eP is not eP dP
dt . This matrixeP (t) is not solvingy ′ = A(t)y.

25 Find the solution toy ′ = A(t)y in Problem 24 by solving fory2 and theny1 :

Solve

[
dy1/dt
dy2/dt

]
=

[
1 2t
0 0

] [
y1
y2

]
starting from

[
y1(0)
y2(0)

]
.

Certainly y2(t) stays aty2(0). Find y1(t) by “undetermined coefficients”A,B,C :
y ′

1 = y1 + 2ty2(0) is solved by y1 = yp + yn = At+B + Cet.

ChooseA,B,C to satisfy the equation and match the initial conditiony1(0).

The wrong answer in Problem 24 included the incorrect factortet in eP (t).

To solvey ′ = A(t)y in Problem 24 we can start with its second equation :

y ′ = A(t)y is
dy1/dt = y1 + 2ty2

dy2/dt = 0
Theny2(t) = y2(0) = constant and the first equation becomesdy1/dt = y1+2ty2(0).
A particular solution has the formy1 = At + B. Substitute thisy1 to findA andB :

dy1
dt

= y1 + 2ty2(0) givesA = At+B + 2ty2(0) and thenA = −2y2(0) = B.

Now add a null solutionCet to start fromy1(0) :

y1(t) = (y1(0) + 2y2(0))e
t − 2y2(0)t− 2y2(0).

This correct solution has no factortet.

Problem Set 6.5, page 379

Problems 1–14 are about eigenvalues. Then come differential equations.

1 Which ofA,B,C have two realλ’s ? Which have two independent eigenvectors ?

A =

[
7 −11

−11 7

]
B =

[
7 −11
11 7

]
C =

[
7 −11
0 7

]

A is symmetric: Realλ’s with a full set of two eigenvectors.

B = 7I+ antisymmetric: Complexλ = 7± 11i, full set of (complex) eigenvectors.

C = 7I − 11

[
0 1
0 0

]
: Eigenvalues7, 7 but only one eigenvector.
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2 Show thatA has real eigenvalues ifb ≥ 0 and nonreal eigenvalues ifb < 0 :

A =

[
0 b
1 0

]
and A =

[
1 b
1 1

]
.

The eigenvalues of

[
0 b
1 0

]
haveλ2 − b = 0. Thenλ = ±

√
b if b ≥ 0.

[
1 b
1 1

]
hasλ = 1 ±

√
b.

3 Find the eigenvalues and the unit eigenvectors of the symmetric matrices

(a) S =

[
2 2 2
2 0 0
2 0 0

]
and (b) S =

[
1 0 2
0 −1 −2
2 −2 0

]
.

(a)det

[
2− λ 2 2
2 −λ 0
2 0 −λ

]
= (2− λ)λ2 + 4λ+ 4λ = −λ3 + 2λ2 + 8λ

= −λ(λ− 4)(λ+ 2). λ = 0,4,−2.

Unit (orthonormal!) eigenvectors
1√
2

[
0
1

−1

]
,

1√
6

[
2
1
1

]
,

1√
3

[
1

−1
−1

]
.

(b) det

[
1− λ 0 2
0 −1− λ −2
2 −2 −λ

]
= λ(1 − λ2) + 4(1 + λ)− 4(1− λ) = 9λ− λ3

= −λ(λ− 3)(λ+ 3).

λ = 0,3,−3 with orthonormal eigenvectors
1

3

[
2
2

−1

]
,

1

3

[
2

−1
2

]
,

1

3

[ −1
2
2

]
.

4 Find an orthogonal matrixQ that diagonalizesS =

[
−2 6
6 7

]
. What isΛ?

The eigenvalues fromλ2 − 5λ− 50 = 0 = (λ− 10)(λ+ 5) areλ1 = 10 andλ2 = 5.
The unit eigenvectors are inQ :

Q =

[
1/

√
5 −2/

√
5

2/
√
5 1/

√
5

]
with Λ =

[
10 0
0 −5

]
.

5 Show that thisA (symmetric but complex) has only one line of eigenvectors :

A =

[
i 1
1 −i

]
is not even diagonalizable. Its eigenvalues are0 and0.

AT = A is not so special for complex matrices.The good property isA
T
= A.

det(A − λI) = λ2 givesλ = 0, 0. But A − λI = A hasrank 1 : Only one line of
eigenvectors in its nullspace.
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6 Findall orthogonal matrices from allx1,x2 to diagonalizeS =

[
9 12
12 16

]
.

λ2 − 25λ = 0 gives eigenvalues0 and25. The (real) eigenvectors inQ can be

Q =
1

5

[
4 3

−3 4

]
or

1

5

[
−4 3
3 4

]
or

1

5

[
4 −3

−3 −4

]
or

1

5

[
−4 −3
3 −4

]
.

7 (a) Find a symmetric matrixS =

[
1 b
b 1

]
that has a negative eigenvalue.

(b) How do you know thatS must have a negative pivot?

(c) How do you know thatS can’t have two negative eigenvalues?

The determinant ofS is negative ifb2 > 1. This determinant is (pivot1)(pivot 2).
Also detS = λ1 timesλ2. So exactly one eigenvalue is negative ifb2 > 1.

8 If A2 = 0 then the eigenvalues ofA must be . Give an example withA 6= 0. But
if A is symmetric, diagonalize it to prove that the matrix isA = 0.

If Ax = λx thenA2x = λ2x. HereA2 = 0 soλ must be zero.

Nonsymmetric example :A =

[
0 1
0 0

]
is not diagonalizable.

The only symmetric example isA =

[
0 0
0 0

]
becauseA = QΛQT andA =

[
0 0
0 0

]
.

9 If λ = a+ ib is an eigenvalue of a real matrixA, then its conjugateλ = a− ib is also
an eigenvalue. (IfAx = λx then alsoAx = λx.) Prove that every real3 by 3 matrix
has at least one real eigenvalue.

A real 3 by 3 matrix hasdet(A − λI) = −λ3 + c2λ
2 + c1λ + c2 = 0. If λ1 satisfies

this equation so doesλ2 = λ1 (take the conjugate of every term). But the sumλ1 +
λ2 + λ3 = trace ofA = real number. Soλ3 must be real.

10 Here is a quick “proof” that the eigenvalues ofall real matrices are real:

False proof Ax = λx gives xTAx = λxTx so λ =
xTAx

xTx
is real.

Find the flaw in this reasoning—a hidden assumption that is not justified. You could
test those steps on the90◦ rotation matrix[ 0 −1; 1 0 ] with λ = i andx = (i, 1).

The flaw is to expect thatxTAx andxTx are real andxTx > 0. When complex
numbers are involved, it isxTx that is real and positive for every vectorx 6= 0.

11 Write A and B in the form λ1x1x
T
1 + λ2x2x

T
2 of the spectral theoremQΛQT :

A =

[
3 1
1 3

]
B =

[
9 12
12 16

]
(keep‖x1‖ = ‖x2‖ = 1).

A hasλ = 4,2 with unit eigenvectors inQ. Multiply columns times rows :
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[
3 1
1 3

]
= QΛQT =

1√
2

[
1 1

−1 1

] [
4

2

]
1√
2

[
1 −1
1 1

]

= 4

[
1/

√
2

−1/
√
2

] [
1/

√
2 −1/

√
2
]
+ 2

[
1/

√
2

1/
√
2

] [
1/

√
2 1/

√
2
]

B hasλ = 0, 25 with these unit eigenvectors inQ :

[
9 12

12 16

]
=

[
4/5 3/5

−3/5 4/5

] [
0

25

] [
4/5 −3/5
3/5 4/5

]
= 0+25

[
3/5
4/5

]
[ 3/4 4/5 ] .

12 What numberb in
[
2 b
1 0

]
makesA = QΛQT possible? What number makesA =

V ΛV −1 impossible? What number makesA−1 impossible?

b = 1 makesA symmetric and thenA = QΛQT. b = −1 makesλ = 1, 1 with only
one eigenvector.b = 0 makes the matrix singular.

13 ThisA is nearly symmetric. But its eigenvectors are far from orthogonal:

A =

[
1 10−15

0 1 + 10−15

]
has eigenvectors

[
1
0

]
and [ ? ]

What is the dot product of the two unit eigenvectors ? A small angle !

The unit eigenvector forλ = 1 + 10−15 is
1√
2

[
1
1

]
.

The two eigenvectors are at a45 ◦ angle, far from orthogonal (even ifA is nearly sym-
metric).

14 (Recommended) This matrixM is skew-symmetric and also orthogonal. Then all its
eigenvalues are pure imaginary and they also have|λ| = 1. They can only bei or −i.
Find all four eigenvalues from the trace ofM :

M =
1√
3




0 1 1 1
−1 0 −1 1
−1 1 0 −1
−1 −1 1 0


 can only have eigenvaluesi or − i.

The four eigenvalues must beλ = i, i,−i,−i to produce trace= zero.

15 The complete solution to equation (8) for two oscillating springs (Figure 6.3) is

y(t) = (A1 cost+B1 sint)

[
1
1

]
+ (A2 cos

√
3t+B2 sin

√
3t)

[
1

−1

]
.

Find the numbersA1, A2, B1, B2 if y(0) = (3, 5) andy′(0) = (2, 0).

The numbersA1, A2 come fromy(0) = (3, 5) sincecos 0 = 1 :

A1 =

[
1
1

]
+A2

[
1

−1

]
=

[
3
5

]
gives A1 = 4 and A2 = −1.
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The numbersB1, B2 come fromy ′(0) = (2, 0) since (sin t) ′ = 1 at t = 0 and
(sin

√
3t) ′ =

√
3 at t = 0 :

B1 =

[
1
1

]
+
√
3B2

[
1

−1

]
=

[
2
0

]
gives B1 = B2 =

1√
3
.

16 If the springs in Figure 6.3 have different constantsk1, k2, k3 theny′′ + Sy = 0 is

Upper mass y′′1 + k1y1 − k2(y2 − y1) = 0

Lower mass y′′2 + k2(y2 − y1) + k3y2 = 0
S =

[
k1 + k2 −k2
−k2 k2 + k3

]

For k1 = 1, k2 = 4, k3 = 1 find the eigenvaluesλ = ω2 of S and the complete
sine/cosine solutiony(t) in equation (7).

The matrixS =

[
1 + 4 −4
−4 4 + 1

]
has eigenvaluesλ1 = 1 = ω2

1 andλ2 = 9 = ω2
2 .

The complete solution toy ′′ + Sy = 0 is

y(t) = (A1 cos t+B1 sin t)

[
1
1

]
+ (A2 cos 3t+B2 sin 3t)

[
1

−1

]
.

17 Suppose the third spring is removed (k3 = 0 and nothing is below mass2). With k1 =
3, k2 = 2 in Problem16, find S and its real eigenvalues and orthogonal eigenvectors.
What is the sine/cosine solutiony(t) if y(0) = (1, 2) gives the cosines andy′(0) =
(2,−1) gives the sines ?

When k1 = 3, k2 = 2, k3 = 0, the matrixS becomesS =

[
5 −2

−2 2

]
with

λ2 − 7λ+ 6 = (λ− 1)(λ− 6) = 0.

The eigenvector forλ1 = ω2
1 = 1 is x1 = (1, 2). The orthogonal eigenvector for

λ2 = ω2
2 = 6 is x2 = (2,−1). ThenA1 = 1 andA2 = 0, B1 = 0 andB2 =

1/
√
6 come fromy(0) = x1 andy ′(0) = x2. The solution toy ′′ + Sy = 0 is

y(t) = (cos t)x1 + (sin
√
6t)x2/

√
6.

18 Suppose the top spring is also removed (k1 = 0 and alsok3 = 0). S is singular !
Find its eigenvalues and eigenvectors. Ify(0) = (1,−1) andy′ = (0, 0) find y(t). If
y(0) changes from(1,−1) to (1, 1) what isy(t) ?

S =

[
k2 −k2

−k2 k2

]
hasλ1 = 0 with x1 = (1, 1) andλ2 = 2k2 with x2 = (1,−1).

y(0) = (1,−1) and y ′(0) = (0, 0) give y(t) = (cos
√
2k2 t)x2.

y(0) = (1,−1) and y ′(0) = (0, 0) give y(t) = x1 = (1, 1) : no movement!
There is no force from springs1 and3 and no initial velocityy ′(0).

19 The matrix in this question is skew-symmetric (AT = −A). Energy is conserved.

dy

dt
=

[
0 c −b

−c 0 a
b −a 0

]
y or

y ′

1 = cy2 − by3
y ′

2 = ay3 − cy1
y ′

3 = by1 − ay2.

The derivative of ‖y(t)‖2 = y21 + y22 + y23 is 2y1y
′
1 + 2y2y

′
2 + 2y3y

′
3.

Substitutey′1, y
′
2, y

′
3 to getzero. The energy‖y(t)‖2 stays equal to‖y(0)‖2.
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y1y
′

1 + y2y
′

2 + y3y
′

3 = y1(cy2 − by3) + y2(ay3 − cy1) + y3(by1 − ay2) = 0.

Then‖y(t)‖2 stays constant, equal to‖y(0)‖2.

20 WhenA = −AT is skew-symmetric, eAt is orthogonal. Prove(eAt)T = e−At

from the serieseAt = I +At+ 1
2A

2t2 + · · · .

A =

[
0 1

−9 0

]
hasdet = 9: λ = 3i and−3i with x = (1, 3i) and(1,−3i). Then

y(t) = 3

2
e3it

[
1
3i

]
+ 3

2
e−3it

[
1

−3i

]
=

[
3 cos 3t

−9 sin 3t

]
.

21 The mass matrixM can have massesm1 = 1 andm2 = 2. Show that the eigenvalues
for Kx = λMx areλ = 2±

√
2, starting from det(K − λM) = 0 :

M =

[
1 0
0 2

]
and K =

[
2 −2

−2 4

]
are positive definite.

Find the two eigenvectorsx1 andx2. Show thatxT
1 x2 6= 0 butxT

1 Mx2 = 0.

Kx = λMx is (K − λM)x = 0 and we need the determinant ofK − λM to be0 :

det

[
2− λ −2
−2 4− 2λ

]
= 2(λ2 − 4λ+ 2) = 0 λ =

4±
√
16− 8

2
= 2 ±

√
2.

The eigenvectorsx1 = (
√
2,−1) andx2 = (

√
2, 1) come from

(K−λ1M)x1=

[
−
√
2 −2

−2 −2
√
2

]
x1=0 and(K−λ2M)x2 =

[√
2 −2

−2 2
√
2

]
x2 = 0.

Notice thatx1 is not orthogonal tox2—it is “M -orthogonal” :

xT
1 Mx2 =

[ √
2 −1

] [ 1 0
0 2

] [ √
2
1

]
= 0.

22 What difference equation would you use to solvey ′′ = −Sy ?

y ′′ = −Sy is well approximated byyn+1 − 2yn + yn−1 = −(∆t)2Syn. The initial
conditions come in asy0 = y(0) andy1 = y(0)+∆ty ′(0) (but that is only a first order
accurate approximation to the truey(∆t)).

23 The second order equationy ′′ + Sy = 0 reduces to a first order systemy1
′ = y2 and

y2
′ = −Sy1. If Sx = ω2x show that the companion matrixA = [0 I ; −S 0] has

eigenvaluesiω and−iω with eigenvectors(x, iωx) and(x,−iωx).

The first-order equation withblockcompanion matrix fory ′′ = −Sy is
[

y1
y2

] ′
=

[
y
y ′

] ′
=

[
0 I

−S 0

] [
y
y ′

]
=

[
0 I

−S 0

] [
y1
y2

]

For the eigenvalues : IfSx = ω2x then[
0 I

−S 0

] [
x

± iωx

]
=

[
± iωx
−ω2x

]
= ± iω

[
x

± iωx

]
.

So the block companion matrixA has eigenvaluesiω and−iω. Then we can compute
and use the exponentialeAt (if we want to).
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24 Find the eigenvaluesλ and eigenfunctionsy(x) for the differential equation
y ′′ = λy with y(0) = y(π) = 0. There are infinitely many !

This is an important problem in function space—instead of eigenvectors inRn we look
for functions ofx betweenx = 0 andx = π :

d2y

dt2
= λy(x) with boundary conditionsy(0) = y(π) = 0.

This equation is satisfied byy(x) = a cos
(√

λx
)
+ b sin

(√
λx
)

.

The boundary conditiony(0) = 0 makesa = 0.

The conditiony(π) = sin
(√

λ π
)
= 0 makes

√
λ = 1 or 2 or 3 or . . . Then

λ = 12 or 22 or any n2 y(x) = sin(
√
λ x).


